亚洲A∨无码澳门在线_亚洲色偷偷色噜噜狠狠99_国产普通话刺激_女生免费黄视频

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

如何讓模擬工程師實(shí)現(xiàn)數(shù)字電源轉(zhuǎn)換

鉅大LARGE  |  點(diǎn)擊量:1225次  |  2020年05月15日  

模擬工程師以前在設(shè)計(jì)要具有多路輸出、動態(tài)負(fù)載共享、熱插拔或廣泛故障處理能力的電源時(shí),往往要與復(fù)雜性抗?fàn)?。利用模擬電路來實(shí)現(xiàn)系統(tǒng)控制功能并非總是經(jīng)濟(jì)有效或靈活的。采用模擬技術(shù)設(shè)計(jì)電源要使用“過大的”元件來解決元件變化和元件漂移的問題。即使是在克服了這些設(shè)計(jì)難點(diǎn)之后,這些電源在生產(chǎn)線末端還要進(jìn)行人工調(diào)整。


那么,模擬工程師應(yīng)該選擇什么來設(shè)計(jì)電源呢?工程學(xué)對這個(gè)問題的回答是利用功率轉(zhuǎn)換反饋環(huán)路的智能數(shù)字控制來實(shí)現(xiàn)上述功能。單片機(jī)已使模擬設(shè)計(jì)人員能夠?qū)崿F(xiàn)監(jiān)控、控制、通信甚至確定性功能(如電源中的上電時(shí)序、軟啟動和拓?fù)浣Y(jié)構(gòu)控制等)。不過,由于缺乏經(jīng)濟(jì)有效的高性能技術(shù),以數(shù)字方式控制整個(gè)功率轉(zhuǎn)換環(huán)路還不太現(xiàn)實(shí)。


開關(guān)電源中的DSC設(shè)計(jì)


現(xiàn)在,一種新型數(shù)字信號控制器(DSC)的問世使具有智能電源外設(shè)等功能的數(shù)字轉(zhuǎn)換成為可能,因?yàn)檫@種器件采用基于計(jì)數(shù)器的脈沖寬度調(diào)制(pWM)模塊、基于模擬比較器的反饋和協(xié)調(diào)模數(shù)轉(zhuǎn)換器(ADC)采樣,可以在一個(gè)單時(shí)鐘周期內(nèi)進(jìn)行快速乘法。這些特性的組合有助于DSC處理控制環(huán)路軟件所需的較高執(zhí)行速度。


在開始進(jìn)行電源設(shè)計(jì)之前,要做出以下決擇。


1.選擇一種適合應(yīng)用要的拓?fù)浣Y(jié)構(gòu):升壓型還是降壓型(Boost還是Buck),隔離式(正向、半橋還是全橋)。


2.選擇一種開關(guān)技術(shù):硬開關(guān)還是軟開關(guān)。軟開關(guān)技術(shù)(如諧振模式或準(zhǔn)諧振模式),以新增電路和控制的復(fù)雜程度為代價(jià),換取較少的開關(guān)損耗。


3.選擇一種控制方法:電壓模式還是電流模式。


電壓模式控制和電流模式控制是基于傳統(tǒng)模擬開關(guān)電源(SMpS)控制技術(shù)的兩種控制方法。在電壓模式條件下,利用期望的輸出電壓和實(shí)際的輸出電壓之間的差值(誤差)來控制電源電壓施加在電感器上的時(shí)間,進(jìn)而間接地控制電感器中的電流。在電流模式控制條件下,利用期望的輸出電壓和實(shí)際的輸出電壓之間的差值(誤差)為模擬比較器創(chuàng)建一個(gè)門限值來設(shè)置峰值電感電流,從而控制平均電感電流。電壓模式可以在噪聲環(huán)境中或?qū)捁ぷ鞣秶鷹l件下供應(yīng)更高的穩(wěn)定性;電流模式控制可以實(shí)現(xiàn)逐周期的電流限制和更快的瞬態(tài)響應(yīng),它還可防止可能導(dǎo)致電感器飽和并引起災(zāi)難性MOSFET故障的“逐步新增的電感電流”。


4.選擇pWM工作頻率。高頻pWM有助于使用更小的電感器和電容器,但是要額外付出開關(guān)損耗為代價(jià)。


5.確定要的控制帶寬。這在很大程度上取決于應(yīng)用所期待的負(fù)載瞬態(tài)響應(yīng)。


6.根據(jù)估計(jì)的控制帶寬需求來分配處理器資源。雖然有多種控制算法,但是常用的技術(shù)仍是比例、積分和微分(pID)方法。使用常用pID算法,控制環(huán)路將要以所需控制系統(tǒng)帶寬的八倍速度運(yùn)行,以保證足夠的相位容限。在估計(jì)控制環(huán)路的延遲時(shí),控制環(huán)路內(nèi)的所有延遲都必須考慮到(參見“計(jì)算控制環(huán)路的延遲”部分)。


接著,選擇一個(gè)可以滿足您所有或大多數(shù)設(shè)計(jì)需求的DSC。


選擇采用Microchip的SMpSdspICDSC——dspIC30F2020來設(shè)計(jì)一個(gè)同步降壓式轉(zhuǎn)換器。這種DSC有一個(gè)硬開關(guān),可供應(yīng)互補(bǔ)pWM模式的電壓控制模式。這種降壓式轉(zhuǎn)換器(見圖1)采用同步開關(guān),用一個(gè)MOSFET取代了電路中的整流器,因?yàn)樗葮?biāo)準(zhǔn)整流器有低得多的正向電壓降。通過降低電壓降,這種降壓式轉(zhuǎn)換器的整個(gè)效率可以提高5%~10%。同步開關(guān)與Q2要一個(gè)次級pWM信號來補(bǔ)充初級pWM信號。當(dāng)Q1關(guān)斷時(shí),Q2接通,反之亦然。此外,在pWM信號的上升沿和下降沿期間,要利用“死區(qū)”控制來防止Q1和Q2同時(shí)導(dǎo)通。


圖1同步降壓式轉(zhuǎn)換器


降壓式轉(zhuǎn)換器的輸入與輸出電壓的關(guān)系可以表示為:


VOUT=VIN(D,其中D=pWM占空比=TON/(TON+TOFF)


一個(gè)降壓式轉(zhuǎn)換器理想的輸出電壓是輸入電壓與晶體管占空比的乘積。通過檢測(見圖1),假如晶體管Q1是常通的,輸出電壓將等于輸入電壓。假如Q1是常斷的,那么輸出電壓將為零。實(shí)際上,當(dāng)負(fù)載電流新增時(shí),晶體管和電感器兩端存在的電壓降將會新增。圖2給出了如何使用DSC設(shè)計(jì)數(shù)字SMpS控制系統(tǒng)。


圖2用于同步降壓式轉(zhuǎn)換器的典型SMpS控制系統(tǒng)


采樣保持(S/H)電路通常每2~10ms進(jìn)行一次采樣,ADC要大約500ns將模擬反饋信號轉(zhuǎn)換成為數(shù)字值。pID控制器是一種運(yùn)行于DSC的程序,有大約1~2ms的計(jì)算延遲。該控制器輸出可以轉(zhuǎn)換為一個(gè)pWM信號,由它來驅(qū)動開關(guān)電路。當(dāng)進(jìn)入新的占空比時(shí),假如pWM發(fā)生器不能立即更新其輸出,就可能出現(xiàn)明顯的延遲。晶體管驅(qū)動器和相關(guān)的晶體管也會引入大約50ns到1微秒的延遲,其長短因使用的器件和電路設(shè)計(jì)而異。


計(jì)算控制環(huán)路的延遲


總控制環(huán)路延遲是ADC采樣與轉(zhuǎn)換時(shí)間(500ns)、pID計(jì)算時(shí)間(1μs)、pWM輸出延遲(0)、晶體管切換時(shí)間(50ns)和pID執(zhí)行速度時(shí)期(2μs)之和。這個(gè)例子中的總環(huán)路延遲是3.65μs,這意味著最大有效控制環(huán)路的采樣率為274kHz。雖然尼奎斯特定理要2倍的采樣率來重建一個(gè)信號,數(shù)字控制環(huán)路仍必須以6倍至10倍采樣率進(jìn)行采樣。這樣做的原因是只使用2倍的采樣率,相位滯后將180度。利用2倍采樣率,我們已經(jīng)用完了180度的相位滯后“預(yù)算”,而沒有考慮系統(tǒng)中任何其他的延遲。一個(gè)采用8倍采樣率的系統(tǒng)單在采樣過程引入45度的相位滯后,這是一個(gè)好得多的采樣率。為了有足夠的相位容限,許多數(shù)字控制系統(tǒng)對模擬信號進(jìn)行了10倍或更高的過采樣。假定最高有效采樣率為274kHz,有效控制帶寬是其八分之一,也就是大約34kHz。


SMpS設(shè)計(jì)中pWM的重要性


不同的電源規(guī)范推動著對不同電源拓?fù)浣Y(jié)構(gòu)的需求,這些不同的拓?fù)浣Y(jié)構(gòu)要不同的pWM模式,其中每一種都支持多種SMpS設(shè)計(jì),包括標(biāo)準(zhǔn)、互補(bǔ)、推挽、多相位、可變相位、電流復(fù)位和電流限制pWM模式。最基本的pWM模式是標(biāo)準(zhǔn)的邊沿對齊式pWM,其中的導(dǎo)通與關(guān)斷時(shí)間之比控制著電源電流。每對輸出中只有一個(gè)pWM輸出被用于這些異步降壓式、升壓式和反激式轉(zhuǎn)換器電路。同步降壓式轉(zhuǎn)換器采用互補(bǔ)pWM模式,其中的互補(bǔ)輸出控制一個(gè)由MOSFET實(shí)現(xiàn)的“同步開關(guān)”整流器,而不是通常的整流器?;パa(bǔ)pWM模式還可以用于采用同步整流來改善系統(tǒng)效率的其他電路。


推挽式轉(zhuǎn)換器通常用于DC/DC轉(zhuǎn)換器和AC/DC電源。“多相pWM”術(shù)語描述的是多pWM輸出而不是邊沿對齊的。多相轉(zhuǎn)換器電路經(jīng)常用于必須供應(yīng)大電流、負(fù)載變化可能非常迅速的應(yīng)用的DC/DC轉(zhuǎn)換器。由于pC電源的廣泛使用,相位變換pWM模式正變得越來越常見。Microchip的dspICDSCSMpS系列可以支持當(dāng)前廣泛用于電源行業(yè)的所有已知的pWM模式。


理解pWM分辨率


電源設(shè)計(jì)人員和客戶必須正確地理解“pWM分辨率”這個(gè)術(shù)語。pWM分辨率并不表示某個(gè)計(jì)數(shù)器有多寬,而是表示在pWM循環(huán)時(shí)期內(nèi)可以發(fā)生多少次計(jì)數(shù)(盡可能最小的pWM時(shí)間片)。在電源行業(yè),pWM分辨率表示的是pWM占空比內(nèi)的最小時(shí)間增量。這個(gè)分辨率經(jīng)常以ns表示。假如一個(gè)pWM模塊沒有足夠的分辨率,控制系統(tǒng)(硬件或軟件)就會使pWM輸出發(fā)生抖動,以實(shí)現(xiàn)期望的平均值輸出。在電源應(yīng)用中,pWM抖動可以引起紋波電流的問題,并使控制進(jìn)入所謂“極限循環(huán)期(LimitCycling)”的不良運(yùn)行模式。


例如,假設(shè)控制環(huán)路的輸出要3.25的值,而pWM可以輸出的值是3和4。在這種情況下,pWM在33343334值之間抖動。這可以容易地看到——許多DSC都采用運(yùn)行于40至150MHz范圍之間的pWM計(jì)數(shù)器,可以出現(xiàn)6至25ns的pWM分辨率。SMpSdspICDSC系列具有1ns的占空比分辨率。在一個(gè)控制環(huán)路中,在pWM輸出一個(gè)新的占空比值之前,來自電壓和電流測量的采集時(shí)間被稱為“延遲”。當(dāng)延遲下降時(shí),控制環(huán)路變得更穩(wěn)定和更具有響應(yīng)能力。一些DSC配備了pWM模塊,只在pWM周期到周期的基礎(chǔ)上接收新的占空比數(shù)據(jù)。在pWM模塊接收數(shù)據(jù)之前,軟件計(jì)算新的占空比值的時(shí)間滯后會新增控制環(huán)路延遲,并使其穩(wěn)定性下降。因此,最好采用有pWM模塊的DSC,以便及時(shí)接收和處理新的占空比數(shù)據(jù)。


SMpSADC的需求


您可以將您的模擬知識運(yùn)用于采用DSC的智能電源設(shè)計(jì)。片上ADC可以為控制環(huán)路供應(yīng)系統(tǒng)狀態(tài)(反饋)。傳統(tǒng)的ADC是基于ADC值以“組”的方式進(jìn)行采集和處理的假設(shè)而設(shè)計(jì)的。音頻處理和工業(yè)控制系統(tǒng)的ADC通常都是以這種方式發(fā)揮用途。組采樣可使處理器工作量達(dá)到組中的峰值,這將新增控制環(huán)路的延遲。


在SMpS電路中,通常不存在要被采樣和轉(zhuǎn)換的模擬信號,或者這樣的信號不會在任何時(shí)候都那么明顯。這樣的信號可能在pWM周期的某一刻才比較明顯。因此,由于不精確的采樣按時(shí),標(biāo)準(zhǔn)的ADC模塊可能錯(cuò)過希望得到的數(shù)據(jù)。


圖3給出了一個(gè)用于監(jiān)測電流的電流檢測電阻器的實(shí)例電路。在這個(gè)電路中,只有當(dāng)晶體管導(dǎo)通時(shí),才能檢測到電流。典型的ADC模塊不能精確地使采樣保持電路在適當(dāng)?shù)臅r(shí)間進(jìn)行一次采樣。假如應(yīng)用要多個(gè)電路進(jìn)行檢測,那么這個(gè)ADC就不理想。SMpSdspICDSC的片上ADC模塊可供應(yīng)獨(dú)立的采樣保持電路,可以進(jìn)行彼此獨(dú)立的采樣。因此,它可以在準(zhǔn)確的時(shí)刻監(jiān)控電壓或電流,有助于實(shí)現(xiàn)事件瞬時(shí)(eventtransitory)信號的采樣,并降低系統(tǒng)成本。此外,SMpSdspIC器件的片上ADC可以進(jìn)行異步采樣,有助于支持pFC(70kHz)和DC/DC(250kHz)等不同頻率的多控制環(huán)路運(yùn)行。


圖3帶有具體采樣保持(S/H)功能的ADC的重要意義


模擬比較器改進(jìn)數(shù)字SMpS設(shè)計(jì)


因?yàn)锳DC不能繼續(xù)不斷地監(jiān)控信號,所以只能以高達(dá)每秒兆次采樣(MSpS)的量級進(jìn)行采樣。一些DSC具有模擬比較器,可以解放處理器和ADC以完成其他重要的任務(wù)。例如,模擬比較器可以利用與傳統(tǒng)線性電源控制器直接控制pWM占空比類似的方式進(jìn)行電流控制。模擬比較器還能夠供應(yīng)對過壓或過流狀況的獨(dú)立監(jiān)測。Microchip的SMpSdspICDSC的參考DAC和模擬比較器可以實(shí)現(xiàn)從電流測量到pWM更新的大約25ns的延遲。通常,從檢測到模擬電壓,直到由比較器對pWM輸出進(jìn)行修改,大約要25ns的時(shí)間。與其他必須使用“輪詢”技術(shù)的ADC以及利用處理器修改pWM輸出來響應(yīng)變化條件的其他DSC相比,這個(gè)響應(yīng)時(shí)間是非常迅速的。事實(shí)上,這正是DSC實(shí)現(xiàn)逐周期電流限制的方法,屬于電流模式控制。由于連接模擬比較器的參考DAC也是16位的,pWM分辨率也是相同的,因此同樣的控制分辨率對電壓和電流模式都是有效的。


pID算法


使用pID算法,將實(shí)際與期望輸出電壓之間的誤差進(jìn)行比例、積分和微分計(jì)算,然后將這三項(xiàng)合起來,實(shí)現(xiàn)對pWM占空比的控制。pID算法可以用于采用電壓和電流模式的控制環(huán)路。處理Microchip的DSC不要DSp技巧(見圖5的代碼列表),控制軟件(圖4)的重要“核心”是pID環(huán)路。pID軟件通常很小,但是其執(zhí)行速度非???,通常每秒可以反復(fù)幾十萬次。這么高的反復(fù)率要pID軟件程序盡可能有效地發(fā)揮最佳性能。使用匯編程序是保證“嚴(yán)緊代碼”的一種很好的方法。


pID控制環(huán)路是定期由ADC進(jìn)行中斷驅(qū)動,任何系統(tǒng)功能都能在“空閑環(huán)路”中執(zhí)行,以便減少pID控制軟件內(nèi)不必要的工作量。諸如電壓上升/下降、錯(cuò)誤檢測、前饋計(jì)算和通信支持程序功能都是空閑環(huán)路可以執(zhí)行的,其他中斷驅(qū)動進(jìn)程的優(yōu)先級都必須比pID環(huán)路低。


空閑環(huán)路在完成系統(tǒng)和外設(shè)的初始化任務(wù)之后啟動。通常,空閑環(huán)路監(jiān)控溫度,計(jì)算“前饋”條件,并檢查故障狀況。SMpS軟件可執(zhí)行該控制算法,將ADC中斷驅(qū)動的pID環(huán)路作為其與時(shí)間關(guān)系最密切的部分。pID軟件不應(yīng)該使用超過可用處理器大約66%的帶寬,以便計(jì)算資源的其余部分能夠分配給空閑環(huán)路軟件。


假設(shè)以30MIpS運(yùn)行pID環(huán)路(包括30條指令),執(zhí)行時(shí)間大約為1μs。假如反復(fù)率是500kHz(2μs),那么pID工作量要消耗一半可用的處理器帶寬,也就是15MIpS。


用于數(shù)字式降壓式轉(zhuǎn)換器的pID軟件的實(shí)例代碼列表:


CALCULATE_pID:push.s;SaveSRandW0-W3bclr.bIFS0+1,#3;ClrIRQflagininterruptcontroller#pID_REG_BASE,w8;InitpointertopIDregisterblockmov#pID_GAIN_REG_BASE,w10;InitpointertopIDgainregisterblockmovADBUF1,w0;ReadADCtogetvoltagemeasurementmovCOMMANDED_VOLTAGE,w1;Getcommandedoutputvoltagesubw1,w0,w0;W0=proportionalvoltageerrormovpROpORTIONAL_ERROR,w1;Getpreviousvoltageerrorsubw0,w1,w2;differror=newverr-oldverrmovw0,pROpORTIONAL_ERROR;StoreNewproportionalVoltageErrormovw0,pREINTEGRAL_TERM;StorecopypERRaspreintegraltermmovw2,DERIVATIVE_ERROR;StorenewDerivativeError;TheseregistersarereservedforpIDcalculations;w6,w7=containsdataforMACoperations;w8,w10=pointerstoerrorterms,andgaincoefficientsSUM_pID_TERMS:clrA,[w8]+=2,w6,[w10]+=2,w7;clrA,prefetchw6,w7macw6*w7,A,[w8]+=2,w6,[w10]+=2,w7;MACproportionaltermandgainmacw6*w7,A,[w8]+=2,w6,[w10]+=2,w7;MACderivativetermandgainmacw6*w7,B,[w8]+=2,w6,[w10]+=2,w7;UpdateIntegratoraddACCA;AddACCB(Integrator)toACCAsftacA,-#8;scaleaccumulator(shift)movACCAH,w0;ReadMSWofacca(result)btstACCAU,#7;ChecksignbitofACCAbraz,OUTpUT_pWM;BranchifaccapWMvalueispositiveclrw0;ClearnegativepWMvaluesOUTpUT_pWM:movw0,DC1;Outputnewdutycyclevaluepop.s;RestoreSR,w0-w3retfie;ReturnfromInterrupt


評估板有助于設(shè)計(jì)人員測試和修改SMpS控制軟件,并理解SMpS的設(shè)計(jì)原理。在這種情況下,您可以考慮使用Microchip的dspICDEMSMpS降壓型開發(fā)板——卓越的低功耗DC/DC降壓式轉(zhuǎn)換器來評估DSC器件和控制軟件。該板可通過標(biāo)準(zhǔn)AC/DC9V,0.75A電源獲得其輸入電源。板上有兩個(gè)獨(dú)立的降壓式轉(zhuǎn)換器,演示軟件設(shè)置可供應(yīng)高達(dá)+5V和+3.3V的輸出。


圖4控制軟件的結(jié)構(gòu)


這個(gè)開發(fā)板的輸入電壓范圍為8-14VDC。每個(gè)輸出負(fù)載應(yīng)該限制在0.75A,而輸入電源可以通過同軸輸入電源連接器J2或測試夾連接p1和p2供應(yīng)。該板也可為+5V輸出供應(yīng)一個(gè)動態(tài)負(fù)載。這個(gè)負(fù)載是通過1kHz方波信號驅(qū)動的,該信號是由輸出比較模塊出現(xiàn)的。板上動態(tài)負(fù)載使用一個(gè)FET將電阻器負(fù)載連接到轉(zhuǎn)換器對地輸出,實(shí)現(xiàn)轉(zhuǎn)換器激勵(lì),以便可以測量轉(zhuǎn)換器的動態(tài)行為。動態(tài)負(fù)載的使用可通過跳線模塊和/或軟件由用戶自行選擇。


用戶可以選擇通過跳線設(shè)置,像標(biāo)準(zhǔn)降壓式轉(zhuǎn)換器或同步降壓式轉(zhuǎn)換器那樣運(yùn)行開發(fā)板。所供應(yīng)的軟件能夠以電壓控制模式運(yùn)行該板,也可以進(jìn)行電流監(jiān)控。該板也可通過轉(zhuǎn)換器輸出端的一個(gè)檢測電阻器測量電流,而電壓則被放大并送到dspIC30F2020器件的ADC輸入端。該板還可供應(yīng)通過ADC輸入可讀取的三個(gè)備用可變電阻器。這些“電位器”可用于在原型設(shè)計(jì)中的模擬所需的信號。


結(jié)語


通過專用于數(shù)字回路控制的新款DSC,電源設(shè)計(jì)人員可以容易地在他們的設(shè)計(jì)中加入新的功能和能力。要做到這一點(diǎn),無需學(xué)習(xí)復(fù)雜的數(shù)字信號處理器(DSp)處理技巧,使用熟悉的模擬元件和軟件,設(shè)計(jì)人員就能夠迅速而經(jīng)濟(jì)地使用DSC開發(fā)具有更高智能的電源。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力