鉅大LARGE | 點擊量:977次 | 2022年04月08日
一個典型的動力鋰離子電池管理系統(tǒng),要實現(xiàn)什么功能?
電池管理系統(tǒng),BMS(BatteryManagementSystem),是電動汽車動力鋰電池系統(tǒng)的重要組成。它一方面檢測收集并初步計算電池實時狀態(tài)參數(shù),并根據(jù)檢測值與允許值的比較關系控制供電回路的通斷;另一方面,將采集的關鍵數(shù)據(jù)上報給整車控制器,并接收控制器的指令,與車輛上的其他系統(tǒng)協(xié)調(diào)工作。電池管理系統(tǒng),不同電芯類型,對管理系統(tǒng)的要求往往并不相同。
1簡介
電動汽車用鋰離子電池容量大、串并聯(lián)節(jié)數(shù)多,系統(tǒng)復雜,加之安全性、耐久性、動力性等性能要求高、實現(xiàn)難度大,因此成為影響電動汽車推廣普及的瓶頸。鋰離子電池安全工作區(qū)域受到溫度、電壓窗口限制,超過該窗口的范圍,電池性能就會加速衰減,甚至發(fā)生安全問題。目前,大部分車用鋰離子電池,要求的可靠工作溫度為,放電時-20~55C,充電時0~45C(對石墨負極),而關于負極LTO充電時最低溫度為-30C;工作電壓一般為1.5~4.2V左右(關于LiCoO2/C、LiNi0.8Co0.15Al0.05O2/C、LiCoxNiyMnzO2/C以及LiMn2O4/C等材料體系約2.5~4.2V,關于LiMn2O4/Li4Ti5O12材料體系約1.5~2.7V,關于LiFePO4/C材料體系約2.0~3.7V)。
溫度對鋰離子電池性能尤其安全性具有決定性的影響,根據(jù)電極材料類型的不同,鋰離子電池(C/LiMn2O4,C/LMO,C/LiCoxNiyMnzO2,C/NCM,C/LiFePO4,C/LiNi0.8Co0.15Al0.05O2,C/NCA)典型的工作溫度如下:放電在-20-55℃,充電在0-45℃;負極材料為Li4Ti5O12或者LTO時,最低充電溫度往往可以達到-30℃。
當溫度過高時,會給電池的壽命造成不利影響。當溫度高至一定程度,則可能造成安全問題。如圖所示圖1中,當溫度為90~120℃時,SEI膜將開始放熱分解[1~3],而一些電解質(zhì)體系會在較低溫度下分解約69℃[4]。當溫度超過120℃,SEI膜分解后無法保護負碳電極,使得負極與有機電解質(zhì)直接反應,出現(xiàn)可燃氣體將[3]。當溫度為130℃,隔膜將開始熔化并關閉離子通道,使得電池的正負極暫時沒有電流流動[5,6]。當溫度升高時,正極材料開始分解(LiCoO2開始分解約在150℃[7],LiNi0.8Co0.15Al0.05O2在約160℃[8,9],LiNixCoyMnzO2在約210℃[8],LiMn2O4在約265℃[1],LiFePO4在約310℃[7])并出現(xiàn)氧氣。當溫度高于200℃時,電解液會分解并出現(xiàn)可燃性氣體[3],并且與由正極的分解出現(xiàn)的氧氣劇烈反應[9],進而導致熱失控。在0℃以下充電,會造成鋰金屬在負極表面形成電鍍層,這會減少電池的循環(huán)壽命。[10]
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
過低的電壓或者過放電,會導致電解液分解并出現(xiàn)可燃氣體進而導致潛在安全風險。過高的電壓或者過充電,可能導致正極材料失去活性,并出現(xiàn)大量的熱;普通電解質(zhì)在電壓高于4.5V時會分解[12]
為了解決這些問題,人們試圖開發(fā)能夠在非常惡劣的情況下進行工作的新電池系統(tǒng),另一方面,目前商業(yè)化鋰離子電池必須連接管理系統(tǒng),使鋰離子電池可以得到有效的控制和管理,每個單電池都在適當?shù)臈l件下工作,充分保證電池的安全性、耐久性和動力性。
2電池管理系統(tǒng)含義
電池管理系統(tǒng)的重要任務是保證電池系統(tǒng)的設計性能,可以分解成如下三個方面:
1)安全性,保護電池單體或電池組免受損壞,防止出現(xiàn)安全事故;
2)耐久性,使電池工作在可靠的安全區(qū)域內(nèi),延長電池的使用壽命;
3)動力性,維持電池工作在滿足車輛要求的狀態(tài)下。鋰離子電池的安全工作區(qū)域如圖1所示。
圖1為鋰離子電池的安全操作窗口
BMS由各類傳感器、執(zhí)行器、控制器以及信號線等組成,為滿足相關的標準或規(guī)范,BMS應該具有以下功能。
1)電池參數(shù)檢測。包括總電壓、總電流、單體電池電壓檢測(防止出現(xiàn)過充、過放甚至反極現(xiàn)象)、溫度檢測(最好每串電池、關鍵電纜接頭等均有溫度傳感器)、煙霧探測(監(jiān)測電解液泄漏等)、絕緣檢測(監(jiān)測漏電)、碰撞檢測等。
2)電池狀態(tài)估計。包括荷電狀態(tài)(SOC)或放電深度(DOD)、健康狀態(tài)(SOH)、功能狀態(tài)(SOF)、能量狀態(tài)(SOE)、故障及安全狀態(tài)(SOS)等。
3)在線故障診斷。包括故障檢測、故障類型判斷、故障定位、故障信息輸出等。故障檢測是指通過采集到的傳感器信號,采用診斷算法診斷故障類型,并進行早期預警。電池故障是指電池組、高壓電回路、熱管理等各個子系統(tǒng)的傳感器故障、執(zhí)行器故障(如接觸器、風扇、泵、加熱器等),以及網(wǎng)絡故障、各種控制器軟硬件故障等。電池組本身故障是指過壓(過充)、欠壓(過放)、過電流、超高溫、內(nèi)短路故障、接頭松動、電解液泄漏、絕緣降低等。
4)電池安全控制與報警。包括熱系統(tǒng)控制、高壓電安全控制。BMS診斷到故障后,通過網(wǎng)絡通知整車控制器,并要求整車控制器進行有效處理(超過一定閾值時BMS也可以切斷主回路電源),以防止高溫、低溫、過充、過放、過流、漏電等對電池和人身的損害。
5)充電控制。BMS中具有一個充電管理模塊,它能夠根據(jù)電池的特性、溫度高低以及充電機的功率等級,控制充電機給電池進行安全充電。
6)電池均衡。不一致性的存在使得電池組的容量小于組中最小單體的容量。電池均衡是根據(jù)單體電池信息,采用主動或被動、耗散或非耗散等均衡方式,盡可能使電池組容量接近于最小單體的容量。
7)熱管理。根據(jù)電池組內(nèi)溫度分布信息及充放電需求,決定主動加熱/散熱的強度,使得電池盡可能工作在最適合的溫度,充分發(fā)揮電池的性能。
8)網(wǎng)絡通訊。BMS要與整車控制器等網(wǎng)絡節(jié)點通信;同時,BMS在車輛上拆卸不方便,要在不拆殼的情況下進行在線標定、監(jiān)控、自動代碼生成和在線程序下載(程序更新而不拆卸產(chǎn)品)等,一般的車載網(wǎng)絡均采用CAN總線技術。
9)信息存儲。用于存儲關鍵數(shù)據(jù),如SOC、SOH、SOF、SOE、累積充放電Ah數(shù)、故障碼和一致性等。車輛中的真實BMS可能只有上面提到的部分硬件和軟件。每個電池單元至少應有一個電池電壓傳感器和一個溫度傳感器。關于具有幾十個電池的電池系統(tǒng),可能只有一個BMS控制器,或者甚至將BMS功能集成到車輛的主控制器中。關于具有數(shù)百個電池單元的電池系統(tǒng),可能有一個主控制器和多個僅管理一個電池模塊的從屬控制器。關于每個具有數(shù)十個電池單元的電池模塊,可能存在一些模塊電路接觸器和平衡模塊,并且從控制器像測量電壓和電流相同管理電池模塊,控制接觸器,均衡電池單元并與主控制器通信。根據(jù)所報告的數(shù)據(jù),主控制器將執(zhí)行電池狀態(tài)估計,故障診斷,熱管理等。
10)電磁兼容。由于電動汽車使用環(huán)境惡劣,要求BMS具有好的抗電磁干擾能力,同時要求BMS對外輻射小。電動汽車BMS軟硬件的基本框架如圖2所示。
3BMS的關鍵問題
盡管BMS有許多功能模塊,本文僅分析和總結(jié)其關鍵問題。目前,關鍵問題涉及電池電壓測量,數(shù)據(jù)采樣頻率同步性,電池狀態(tài)估計,電池的均勻性和均衡,和電池故障診斷的精確測量。
3.1電池電壓測量(CVM)
電池電壓測量的難點存在于以下幾個方面:
(1)電動汽車的電池組有數(shù)百個電芯的串聯(lián)連接,要許多通道來測量電壓。由于被測量的電池電壓有累積電勢,而每個電池的積累電勢都不同,這使得它不可能采用單向補償方法消除誤差。
(2)電壓測量要高精度(特別是關于C/LiFePO4電池)。SOC估算對電池電壓精度提出了很高的要求。這里我們以C/LFP和LTO/NCM型電池為例。圖3顯示了電池C/LiFePO4和LTO/NCM的開路電壓(OCV)以及每mV電壓對應的SOC變化。從圖中我們可以看到LTO/NCM的OCV曲線的斜率相對陡峭,且大多數(shù)SOC范圍內(nèi),每毫伏的電壓變化對應的最大SOC率范圍低于0.4%(除了SOC60~70%)。因此,假如電池電壓的測量精度為10mV,那么通過OCV估計方法獲得的SOC誤差低于4%。因此,關于LTO/NCM電池,電池電壓的測量精度要小于10mV。但C/LiFePO4OCV曲線的斜率相對平緩,并且在大多數(shù)范圍內(nèi)(除了SOC<40%和65~80%),每毫伏電壓的最大相應SOC變化率達到4%。因此,電池電壓的采集精度要求很高,達到1mV左右。目前,電池電壓的大部分采集精度僅達到5mV。在文獻[47]和[48]中,分別總結(jié)了鋰離子電池組和燃料動力電池組的電壓測量方法。這些方法包括電阻分壓器方法,光耦合隔離放大器方法,離散晶體管的方法[49],分布式測量方[50],光耦合中繼方法[51]等等。目前,電池的電壓和溫度采樣已形成芯片產(chǎn)業(yè)化,表1比較了大多數(shù)BMS所用芯片的性能。
3.2數(shù)據(jù)采樣頻率同步性
信號的采樣頻率與同步對數(shù)據(jù)實時分析和處理有影響。設計BMS時,要對信號的采樣頻率和同步精度提出要求。但目前部分BMS設計過程中,對信號采樣頻率和同步?jīng)]有明確要求。電池系統(tǒng)信號有多種,同時電池管理系統(tǒng)一般為分布式,假如電流的采樣與單片電壓采樣分別在不同的電路板上;信號采集過程中,不同控制子板信號會存在同步問題,會對內(nèi)阻的實時監(jiān)測算法出現(xiàn)影響。同一單片電壓采集子板,一般采用巡檢方法,單體電壓之間也會存在同步問題,影響不一致性分析。系統(tǒng)對不同信號的數(shù)據(jù)采樣頻率和同步要求不同,對慣性大的參量要求較低,如純電動汽車電池正常放電的溫升數(shù)量級為1℃/10min,考慮到溫度的安全監(jiān)控,同時考慮BMS溫度的精度(約為1℃),溫度的采樣間隔可定為30s(對混合動力鋰電池,溫度采樣率要更高一些)。
電壓與電流信號變化較快,采樣頻率和同步性要求很高。由交流阻抗分析可知,動力鋰電池的歐姆內(nèi)阻響應在ms級,SEI膜離子傳輸阻力電壓響應為10ms級,電荷轉(zhuǎn)移(雙電容效應)響應為1~10s級,擴散過程響應為min級。目前,電動汽車加速時,驅(qū)動電機的電流從最小變化到最大的響應時間約為0.5s,電流精度要求為1%左右,綜合考慮變載工況的情況,電流采樣頻率應取10~200Hz。單片信息采集子板電壓通道數(shù)一般為6的倍數(shù),目前最多為24個。一般純電動乘用車電池由約100節(jié)電池串聯(lián)組成,單體電池信號采集要多個采集子板。為了保證電壓同步,每個采集子板中單體間的電壓采樣時間差越小越好,一個巡檢周期最好在25ms內(nèi)。子板之間的時間同步可以通過發(fā)送一幀CAN參考幀來實現(xiàn)。數(shù)據(jù)更新頻率應為10Hz以上。
后面兩天的文章中還會涉及的BMS的關鍵功能還有:電池狀態(tài)估計,包括SOC估計方法概述,SOH估計方法概述,SOF估計方法概述,電池一致性和均衡方法概述,故障診斷概述幾個部分。
上回書說到,鋰離子電池系統(tǒng)龐大,要電池管理系統(tǒng)的監(jiān)督和優(yōu)化,以維護其安全性、耐久性和動力性。上篇中提及的BMS功能需求包括電池電壓測量、數(shù)據(jù)采樣頻率同步性。本文繼續(xù),中篇講述溫度估計和SOC估計。預報,明天的下篇中會包括電池狀態(tài)包括SOH(健康狀態(tài)估計)、SOS(安全狀態(tài)估計)、SOF(功能狀態(tài)估計)及SOE(可用能量狀態(tài)估計)。這些功能是期望BMS具備的,但實際應用中,出于客戶要求、車型要求以及成本等等的考慮,實際設計到系統(tǒng)中的可能只是其中的幾個。
3.3電池狀態(tài)估計
電池狀態(tài)包括電池溫度、SOC(荷電狀態(tài)估計)、SOH(健康狀態(tài)估計)、SOS(安全狀態(tài)估計)、SOF(功能狀態(tài)估計)及SOE(可用能量狀態(tài)估計)。各種狀態(tài)估計之間的關系如圖4所示。電池溫度估計是其他狀態(tài)估計的基礎,SOC估計受到SOH的影響,SOF是由SOC、SOH、SOS以及電池溫度共同確定的,SOE則與SOC、SOH、電池溫度、未來工況有關。
3.3.1電池溫度估計
溫度對電池性能影響較大,目前一般只能測得電池表面溫度,而電池內(nèi)部溫度要使用熱模型進行估計。常用的電池熱模型包括零維模型(集總參數(shù)模型)、一維乃至三維模型。零維模型可以大致計算電池充放電過程中的溫度變化,估計精度有限,但模型計算量小,因此可用于實時的溫度估計。一維、二維及三維模型要使用數(shù)值方法對傳熱微分方程進行求解,對電池進行網(wǎng)格劃分,計算電池的溫度場分布,同時還需考慮電池結(jié)構(gòu)對傳熱的影響(結(jié)構(gòu)包括內(nèi)核、外殼、電解液層等)。一維模型中只考慮電池在一個方向的溫度分布,在其他方向視為均勻。二維模型考慮電池在兩個方
向的溫度分布,對圓柱形電池來說,軸向及徑向的溫度分布即可反映電池內(nèi)部的溫度場。二維模型一般用于薄片電池的溫度分析。三維模型可以完全反映方形電池內(nèi)部的溫度場,仿真精度較高,因而研究較多。但三維模型的計算量大,無法應用于實時溫度估計,只能用于在實驗室中進行溫度場仿真。為了讓三維模型的計算結(jié)果實時應用,研究人員利用三維模型的溫度場計算結(jié)果,將電池產(chǎn)熱功率和內(nèi)外溫差的關系用傳遞函數(shù)表達,通過產(chǎn)熱功率和電池表面溫度估計電池內(nèi)部的溫度,具有在BMS中應用的潛力。圖5所示為電池內(nèi)部溫度的估計流程。
一般地,鋰離子電池適宜的工作溫度為15~35℃,而電動汽車的實際工作溫度為-30~50℃,因此必須對電池進行熱管理,低溫時要加熱,高溫時要冷卻。熱管理包括設計與控制兩方面,其中,熱管理設計不屬于本文內(nèi)容。溫度控制是通過測溫元件測得電池組不同位置的溫度,綜合溫度分布情況,熱管理系統(tǒng)控制電路進行散熱,熱管理的執(zhí)行部件一般有風扇、水/油泵、制冷機等。比如,可以根據(jù)溫度范圍進行分檔控制。Volt插電式混合動力鋰電池熱管理分為3種模式:主動(制冷散熱)、被動(風扇散熱)和不冷卻模式,當動力鋰電池溫度超過某預先設定的被動冷卻目標溫度后,被動散熱模式啟動;而當溫度繼續(xù)升高至主動冷卻目標溫度以上時,主動散熱模式啟動。
3.2荷電狀態(tài)(SOC)估計
SOC(StateofCharge),可用電量占據(jù)電池最大可用容量的比例,通常以百分比表示,100%表示完全充電,0%表示完全放電。
這是針對單個電池的含義,關于電池模塊(或電池組,由于電池組由多個模塊組成,因此從模塊SOC計算電池組的SOC就像電池電池單體SOC估計模塊SOC相同),情況有一點復雜。在SOC估計方法的最后一節(jié)討論。
目前,對SOC的研究已經(jīng)基本成熟,SOC算法重要分為兩大類,一類為單一SOC算法,另一類為多種單一SOC算法的融合算法。單一SOC算法包括安時積分法、開路電壓法、基于電池模型估計的開路電壓法、其他基于電池性能的SOC估計法等。融合算法包括簡單的修正、加權(quán)、卡爾曼濾波(或擴展卡爾曼濾波)以及滑模變結(jié)構(gòu)方法等。
1)放電測試方法
確定電池SOC的最可靠方法是在受控條件下進行放電測試,即指定的放電速率和環(huán)境溫度。這個測試可以準確的計算電池的剩余電量SOC,但所消耗的時間相當長,并且在測試完畢以后電池里面的電量全部放掉,因此這個方法只在實驗室中用來標定驗證電池的標稱容量,無法用于設計BMS做車輛電池電量的在線估計。
2)安時積分法
安時積分計算方法為:
式中,SOC為荷電狀態(tài);SOC0為起始時刻(t0)的荷電狀態(tài);CN為額定容量(為電池當時標準狀態(tài)下的容量,隨壽命變化);η為庫侖效率,放電為1,充電小于1;I為電流,充電為負,放電為正。
在起始荷電狀態(tài)SOC0比較準確情況下,安時積分法在一段時間內(nèi)具有相當好的精度(重要與電流傳感器采樣精度、采樣頻率有關)。但是,安時積分法的重要缺點為:起始SOC0影響荷電狀態(tài)的估計精度;庫侖效率η受電池的工作狀態(tài)影響大(如荷電狀態(tài)、溫度、電流大小等),η難于準確測量,會對荷電狀態(tài)誤差有累積效應;電流傳感器精度,特別是偏差會導致累計效應,影響荷電狀態(tài)的精度。因此,單純采用安時積分法很難滿足荷電狀態(tài)估計的精度要求。
3)開路電壓(OCV)法
鋰離子電池的荷電狀態(tài)與鋰離子在活性材料中的嵌入量有關,與靜態(tài)熱力學有關,因此充分靜置后的開路電壓可以認為達到平衡電動勢,OCV與荷電狀態(tài)具有一一對應的關系,是估計荷電狀態(tài)的有效方法。但是有些種類電池的OCV與充放電過程(歷史)有關,如LiFePO4/C電池,充電OCV與放電OCV具有滯回現(xiàn)象(與鎳氫電池類似),并且電壓曲線平坦,因而SOC估計精度受到傳感器精度的影響嚴重,這些都要進一步研究。開路電壓法最大的優(yōu)點是荷電狀態(tài)估計精度高,但是它的顯著缺點是要將電池長時靜置以達到平衡,電池從工作狀態(tài)恢復到平衡狀態(tài)一般要一按時間,與荷電狀態(tài)、溫度等狀態(tài)有關,低溫下要數(shù)小時以上,所以該方法單獨使用只適于電動汽車駐車狀態(tài),不適合動態(tài)估計。
4)基于電池模型的開路電壓法
通過電池模型可以估計電池的開路電壓,再根據(jù)OCV與SOC的對應關系可以估計當前電池的SOC。等效電路模型是最常用的電池模型。
關于這種方法,電池模型的精度和復雜性非常重要。華等人收集了12個常用等效電路模型,包括組合模型,Rint模型(簡單模型),具有零狀態(tài)滯后模型的Rint模型,具有單態(tài)滯后模型的Rint模型,具有兩個低通濾波器增強型自校正(ESC)模型,具有四個低通濾波器的ESC模型,一階RC模型,一個狀態(tài)滯后的一階RC模型,二階RC模型,具有單態(tài)滯后的二階RC模型,三階RC模型和具有單態(tài)滯后的三階RC模型。
電化學模型是建立在傳質(zhì)、化學熱力學、動力學基礎上,涉及電池內(nèi)部材料的參數(shù)較多,而且很難準確獲得,模型運算量大,一般用于電池的性能分析與設計。
假如電池模型參數(shù)已知,則很容易找到電池OCV。然后使用通過實驗得出的OCV-SOC查找表,可以容易地找到電池SOC。研究人員使用這種方法,并分別采取RINT模型,一階RC,二階RC模型,發(fā)現(xiàn)使用二階RC模型的最大估計誤差是4.3%,而平均誤差是1.4%。
圖6充放電C/的LiFePO的OCV曲線4(在25℃測量,休息時間3小時)
5)神經(jīng)網(wǎng)絡模型方法
神經(jīng)網(wǎng)絡模型法估計SOC是利用神經(jīng)網(wǎng)絡的非線性映射特性,在建立模型時不用具體考慮電池的細節(jié)問題,方法具有普適性,適用于各種電池的SOC估計,但是要大量樣本數(shù)據(jù)對網(wǎng)絡進行訓練,且估算誤差受訓練數(shù)據(jù)和訓練方法的影響很大,且神經(jīng)網(wǎng)絡法運算量大,要強大的運算芯片(如DSP等)。
6)模糊邏輯方法
模糊邏輯法基本思路就是根據(jù)大量試驗曲線、相關經(jīng)驗及可靠的模糊邏輯理論依據(jù),用模糊邏輯模擬人的模糊思維,最終實現(xiàn)SOC預測,但該算法首先要對電池本身有足夠多的了解,計算量也較大。
7)基于電池性能的SOC估計法
基于電池性能的SOC估計方法包括交流阻抗法、直流內(nèi)阻法和放電試驗法。交流阻抗法是通過對交流阻抗譜與SOC的關系進行SOC估計。直流內(nèi)阻法通過直流內(nèi)阻與電池SOC的關系進行估計。
交流阻抗及直流內(nèi)阻一般僅用于電池離線診斷,很難直接應用在車用SOC實時估計中,這是因為,采用交流阻抗的方法要有信號發(fā)生器,會新增成本;電池阻抗譜或內(nèi)阻與SOC關系復雜,影響因素多(包括內(nèi)阻一致性);電池內(nèi)阻很小,車用電池在毫歐級,很難準確獲得;鋰離子電池內(nèi)阻在很寬范圍內(nèi)變化較小,很難識別。
8)融合算法
目前融合算法包括簡單修正、加權(quán)、卡爾曼濾波或擴展卡爾曼濾波(EKF)、滑模變結(jié)構(gòu)等。簡單修正的融合算法重要包括開路電壓修正、滿電修正的安時積分法等。
關于純電動汽車電池,工況較為簡單,車輛運行時除了少量制動回饋充電外重要處于放電態(tài),站上充電時電池處于充電態(tài),開路電壓的滯回效應比較容易估計;電池容量大,安時積分的誤差相對較??;充滿電的機率大,因此,采用開路電壓標定初值和滿電修正的安時積分方法可以滿足純電動汽車電池SOC的估計精度要求。
關于混合動力車電池,由于工況復雜,運行中為了維持電量不變,電流有充有放;停車時除了維護外,沒有站上充電的機會;電池容量較小,安時積分的相對誤差大。因此,簡單的開路電壓修正方法還不能滿足混合動力車電池SOC的估計精度要求,要其他融合方法解決。
加權(quán)融合算法是將不同方法得到的SOC按一定權(quán)值進行加權(quán)估計的方法。MarkVerbrugge等采用安時積分獲得SOCc與采用具有滯回的一階RC模型獲得SOCv的加權(quán)方法估計SOC,計算公式為
卡爾曼濾波是一種常用的融合算法。由于SOC不能直接測量,目前一般將兩種估計SOC的方法融合起來估計。SOC被當成電池系統(tǒng)的一個內(nèi)部狀態(tài)分析。又由于電池系統(tǒng)為非線性系統(tǒng),因此采用擴展的卡爾曼濾波方法,通常采用安時積分與電池模型組成系統(tǒng)進行計算。Plett等研究了安時積分與組合模型、Rint模型(簡單模型)、零狀態(tài)滯回Rint模型、一狀態(tài)滯回Rint模型、加強自修正模型的卡爾曼濾波融合算法。Wang等研究了安時積分與二階RC模型的卡爾曼濾波融合算法。
夏超英等研究了安時積分與一階RC模型的卡爾曼濾波算法,指出EKF作為一個狀態(tài)觀測器,其意義在于用安時積分法計算SOC的同時,估計出電容上的電壓,從而得到電池端電壓的估計值作為校正SOC的依據(jù),同時考慮噪聲及誤差的大小,確定每一步的濾波增益,得到開路電壓法在計算SOC時應占的權(quán)重,從而得到SOC的最優(yōu)估計。這樣就把安時積分法和開路電壓有機地結(jié)合起來,用開路電壓克服了安時積分法有累積誤差的缺點,實現(xiàn)了SOC的閉環(huán)估計。同時,由于在計算過程中考慮了噪聲的影響,所以算法對噪聲有很強的抑制用途。這是當前應用最廣的SOC估計方法。
Charkhgard等采用卡爾曼濾波融合了安時積分與神經(jīng)網(wǎng)絡模型,卡爾曼濾波用于SOC計算的核心是建立合理的電池等效模型,建立一組狀態(tài)方程,因此算法對電池模型依賴性較強,要獲得準確的SOC,要建立較為準確的電池模型,為了節(jié)省計算量,模型還不能太復雜。Ouyang等提出一種實時性好的基于電化學機理的等效電路模型的SOC卡爾曼濾波算法,在保證計算速度基礎上,提高了SOC的估計效果,尤其是低SOC區(qū)的估計精度。但是卡爾曼濾波法的缺點還有卡爾曼增益不好確定,假如選擇不好狀態(tài)將發(fā)散。Kim等提出采用滑模技術克服卡爾曼濾波的缺點,據(jù)稱該方法關于模型參數(shù)不確定和干擾具有較強的魯棒性。
9)電池組SOC估計
電池組由多節(jié)電池串并聯(lián)組成,由于電池單體間存在不一致性,成組后的電池組SOC計算更為復雜。由多個電芯并聯(lián)連接的電池模塊可以被認為是具有高容量的單個電池,并且由于并聯(lián)連接的自平衡特性,可以像單個電池相同估計SOC。
在串聯(lián)連接條件下,粗略的估計電池模塊的SOC也可以像單體電池相同,但考慮到電池的均勻性,情形會有些不同。假設電池模塊中每個單體電池的容量和SOC是已知的。假如有一個非常高效且無損的能量均衡裝置,則電池模塊的SOC:
其中,SOCM表示電池模塊的SOC,SOCi表示第i個電池單元的SOC,Ci表示第i個電池單體的容量。假如平衡裝置不是那么有效,真正的電池模塊的SOC與該平衡裝置的實際性能有關。假如只有耗散式的被動均衡功能或者沒有均衡功能,則電芯中存在一部分無法利用的容量如圖6所示,并且隨著電池差異性的加劇,這種浪費的容量的比例會越來越大。因此,電池模塊的容量表示為:
由此,在每一節(jié)電池單體SOC都可估計的前提下,就可以得到電池組的SOC值。要獲取單體的SOC值,最直接的方法就是應用上述SOC估計方法中的一種,分別估計每一個單體的SOC,但這種方法的計算量太大。為了減小計算量,部分文獻[43~45]在估計電池成組的SOC方法上做了一些改進研究。Dai等[44]采用一個EKF估計電池組平均SOC,用另一個EKF估計每個單體SOC與平均SOC之差ΔSOC。估計ΔSOC的EKF中要估計的狀態(tài)量只有一個,因此算法的計算量較小。另外,考慮到ΔSOC的變化很慢,采用雙時間尺度的方法可以進一步減小計算量。Zheng等提出了一種M+D模型,即一個相對復雜的電池單體平均模型M,和一個簡單的單體差異模型D,利用最小二乘法計算單體與平均單體之間的差值ΔOCV,通過ΔSOC與ΔOCV的關系,可以計算每個單體的SOC值。