鉅大LARGE | 點(diǎn)擊量:963次 | 2020年08月11日
一個(gè)典型的動(dòng)力鋰電池管理系統(tǒng),要實(shí)現(xiàn)什么功能
電池管理系統(tǒng),BMS(BatteryManagementSystem),是電動(dòng)汽車(chē)動(dòng)力鋰電池系統(tǒng)的重要組成。它一方面檢測(cè)收集并初步計(jì)算電池實(shí)時(shí)狀態(tài)參數(shù),并根據(jù)檢測(cè)值與允許值的比較關(guān)系控制供電回路的通斷;另一方面,將采集的關(guān)鍵數(shù)據(jù)上報(bào)給整車(chē)控制器,并接收控制器的指令,與車(chē)輛上的其他系統(tǒng)協(xié)調(diào)工作。電池管理系統(tǒng),不同電芯類(lèi)型,對(duì)管理系統(tǒng)的要求往往并不相同。那么,一個(gè)典型的動(dòng)力鋰電池管理系統(tǒng)具體都要關(guān)注什么功能呢?今天翻譯整理了一篇文章,一起看看BMS的關(guān)鍵技術(shù),整體內(nèi)容分成上中下三個(gè)部分,今天是上篇。
1簡(jiǎn)介
電動(dòng)汽車(chē)用鋰離子電池容量大、串并聯(lián)節(jié)數(shù)多,系統(tǒng)復(fù)雜,加之安全性、耐久性、動(dòng)力性等性能要求高、實(shí)現(xiàn)難度大,因此成為影響電動(dòng)汽車(chē)推廣普及的瓶頸。鋰離子電池安全工作區(qū)域受到溫度、電壓窗口限制,超過(guò)該窗口的范圍,電池性能就會(huì)加速衰減,甚至發(fā)生安全問(wèn)題。目前,大部分車(chē)用鋰離子電池,要求的可靠工作溫度為,放電時(shí)-20~55°C,充電時(shí)0~45°C(對(duì)石墨負(fù)極),而關(guān)于負(fù)極LTO充電時(shí)最低溫度為-30°C;工作電壓一般為1.5~4.2V左右(關(guān)于LiCoO2/C、LiNi0.8Co0.15Al0.05O2/C、LiCoxNiyMnzO2/C以及LiMn2O4/C等材料體系約2.5~4.2V,關(guān)于LiMn2O4/Li4Ti5O12材料體系約1.5~2.7V,關(guān)于LiFePO4/C材料體系約2.0~3.7V)。
溫度對(duì)鋰離子電池性能尤其安全性具有決定性的影響,根據(jù)電極材料類(lèi)型的不同,鋰離子電池(C/LiMn2O4,C/LMO,C/LiCoxNiyMnzO2,C/NCM,C/LiFePO4,C/LiNi0.8Co0.15Al0.05O2,C/NCA)典型的工作溫度如下:放電在-20-55℃,充電在0-45℃;負(fù)極材料為L(zhǎng)i4Ti5O12或者LTO時(shí),最低充電溫度往往可以達(dá)到-30℃。
當(dāng)溫度過(guò)高時(shí),會(huì)給電池的壽命造成不利影響。當(dāng)溫度高至一定程度,則可能造成安全問(wèn)題。如圖所示圖1中,當(dāng)溫度為90~120℃時(shí),SEI膜將開(kāi)始放熱分解[1~3],而一些電解質(zhì)體系會(huì)在較低溫度下分解約69℃[4]。當(dāng)溫度超過(guò)120℃,SEI膜分解后無(wú)法保護(hù)負(fù)碳電極,使得負(fù)極與有機(jī)電解質(zhì)直接反應(yīng),出現(xiàn)可燃?xì)怏w將[3]。當(dāng)溫度為130℃,隔膜將開(kāi)始熔化并關(guān)閉離子通道,使得電池的正負(fù)極暫時(shí)沒(méi)有電流流動(dòng)[5,6]。當(dāng)溫度升高時(shí),正極材料開(kāi)始分解(LiCoO2開(kāi)始分解約在150℃[7],LiNi0.8Co0.15Al0.05O2在約160℃[8,9],LiNixCoyMnzO2在約210℃[8],LiMn2O4在約265℃[1],LiFePO4在約310℃[7])并出現(xiàn)氧氣。當(dāng)溫度高于200℃時(shí),電解液會(huì)分解并出現(xiàn)可燃性氣體[3],并且與由正極的分解出現(xiàn)的氧氣劇烈反應(yīng)[9],進(jìn)而導(dǎo)致熱失控。在0℃以下充電,會(huì)造成鋰金屬在負(fù)極表面形成電鍍層,這會(huì)減少電池的循環(huán)壽命。[10]
過(guò)低的電壓或者過(guò)放電,會(huì)導(dǎo)致電解液分解并出現(xiàn)可燃?xì)怏w進(jìn)而導(dǎo)致潛在安全風(fēng)險(xiǎn)。過(guò)高的電壓或者過(guò)充電,可能導(dǎo)致正極材料失去活性,并出現(xiàn)大量的熱;普通電解質(zhì)在電壓高于4.5V時(shí)會(huì)分解[12]
為了解決這些問(wèn)題,人們?cè)噲D開(kāi)發(fā)能夠在非常惡劣的情況下進(jìn)行工作的新電池系統(tǒng),另一方面,目前商業(yè)化鋰離子電池必須連接管理系統(tǒng),使鋰離子電池可以得到有效的控制和管理,每個(gè)單電池都在適當(dāng)?shù)臈l件下工作,充分保證電池的安全性、耐久性和動(dòng)力性。
2電池管理系統(tǒng)含義
電池管理系統(tǒng)的重要任務(wù)是保證電池系統(tǒng)的設(shè)計(jì)性能,可以分解成如下三個(gè)方面:
1)安全性,保護(hù)電池單體或電池組免受損壞,防止出現(xiàn)安全事故;
2)耐久性,使電池工作在可靠的安全區(qū)域內(nèi),延長(zhǎng)電池的使用壽命;
3)動(dòng)力性,維持電池工作在滿足車(chē)輛要求的狀態(tài)下。鋰離子電池的安全工作區(qū)域如圖1所示。
圖1為鋰離子電池的安全操作窗口
BMS由各類(lèi)傳感器、執(zhí)行器、控制器以及信號(hào)線等組成,為滿足相關(guān)的標(biāo)準(zhǔn)或規(guī)范,BMS應(yīng)該具有以下功能。
1)電池參數(shù)檢測(cè)。包括總電壓、總電流、單體電池電壓檢測(cè)(防止出現(xiàn)過(guò)充、過(guò)放甚至反極現(xiàn)象)、溫度檢測(cè)(最好每串電池、關(guān)鍵電纜接頭等均有溫度傳感器)、煙霧探測(cè)(監(jiān)測(cè)電解液泄漏等)、絕緣檢測(cè)(監(jiān)測(cè)漏電)、碰撞檢測(cè)等。
2)電池狀態(tài)估計(jì)。包括荷電狀態(tài)(SOC)或放電深度(DOD)、健康狀態(tài)(SOH)、功能狀態(tài)(SOF)、能量狀態(tài)(SOE)、故障及安全狀態(tài)(SOS)等。
3)在線故障診斷。包括故障檢測(cè)、故障類(lèi)型判斷、故障定位、故障信息輸出等。故障檢測(cè)是指通過(guò)采集到的傳感器信號(hào),采用診斷算法診斷故障類(lèi)型,并進(jìn)行早期預(yù)警。電池故障是指電池組、高壓電回路、熱管理等各個(gè)子系統(tǒng)的傳感器故障、執(zhí)行器故障(如接觸器、風(fēng)扇、泵、加熱器等),以及網(wǎng)絡(luò)故障、各種控制器軟硬件故障等。電池組本身故障是指過(guò)壓(過(guò)充)、欠壓(過(guò)放)、過(guò)電流、超高溫、內(nèi)短路故障、接頭松動(dòng)、電解液泄漏、絕緣降低等。
4)電池安全控制與報(bào)警。包括熱系統(tǒng)控制、高壓電安全控制。BMS診斷到故障后,通過(guò)網(wǎng)絡(luò)通知整車(chē)控制器,并要求整車(chē)控制器進(jìn)行有效處理(超過(guò)一定閾值時(shí)BMS也可以切斷主回路電源),以防止高溫、低溫、過(guò)充、過(guò)放、過(guò)流、漏電等對(duì)電池和人身的損害。
5)充電控制。BMS中具有一個(gè)充電管理模塊,它能夠根據(jù)電池的特性、溫度高低以及充電機(jī)的功率等級(jí),控制充電機(jī)給電池進(jìn)行安全充電。
6)電池均衡。不一致性的存在使得電池組的容量小于組中最小單體的容量。電池均衡是根據(jù)單體電池信息,采用主動(dòng)或被動(dòng)、耗散或非耗散等均衡方式,盡可能使電池組容量接近于最小單體的容量。
7)熱管理。根據(jù)電池組內(nèi)溫度分布信息及充放電需求,決定主動(dòng)加熱/散熱的強(qiáng)度,使得電池盡可能工作在最適合的溫度,充分發(fā)揮電池的性能。
8)網(wǎng)絡(luò)通訊。BMS要與整車(chē)控制器等網(wǎng)絡(luò)節(jié)點(diǎn)通信;同時(shí),BMS在車(chē)輛上拆卸不方便,要在不拆殼的情況下進(jìn)行在線標(biāo)定、監(jiān)控、自動(dòng)代碼生成和在線程序下載(程序更新而不拆卸產(chǎn)品)等,一般的車(chē)載網(wǎng)絡(luò)均采用CAN總線技術(shù)。
9)信息存儲(chǔ)。用于存儲(chǔ)關(guān)鍵數(shù)據(jù),如SOC、SOH、SOF、SOE、累積充放電Ah數(shù)、故障碼和一致性等。車(chē)輛中的真實(shí)BMS可能只有上面提到的部分硬件和軟件。每個(gè)電池單元至少應(yīng)有一個(gè)電池電壓傳感器和一個(gè)溫度傳感器。關(guān)于具有幾十個(gè)電池的電池系統(tǒng),可能只有一個(gè)BMS控制器,或者甚至將BMS功能集成到車(chē)輛的主控制器中。關(guān)于具有數(shù)百個(gè)電池單元的電池系統(tǒng),可能有一個(gè)主控制器和多個(gè)僅管理一個(gè)電池模塊的從屬控制器。關(guān)于每個(gè)具有數(shù)十個(gè)電池單元的電池模塊,可能存在一些模塊電路接觸器和平衡模塊,并且從控制器像測(cè)量電壓和電流相同管理電池模塊,控制接觸器,均衡電池單元并與主控制器通信。根據(jù)所報(bào)告的數(shù)據(jù),主控制器將執(zhí)行電池狀態(tài)估計(jì),故障診斷,熱管理等。
10)電磁兼容。由于電動(dòng)汽車(chē)使用環(huán)境惡劣,要求BMS具有好的抗電磁干擾能力,同時(shí)要求BMS對(duì)外輻射小。電動(dòng)汽車(chē)BMS軟硬件的基本框架如圖2所示。
圖2車(chē)載BMS的軟硬件基本框架
3BMS的關(guān)鍵問(wèn)題
盡管BMS有許多功能模塊,本文僅分析和總結(jié)其關(guān)鍵問(wèn)題。目前,關(guān)鍵問(wèn)題涉及電池電壓測(cè)量,數(shù)據(jù)采樣頻率同步性,電池狀態(tài)估計(jì),電池的均勻性和均衡,和電池故障診斷的精確測(cè)量。
3.1電池電壓測(cè)量(CVM)
電池電壓測(cè)量的難點(diǎn)存在于以下幾個(gè)方面:
(1)電動(dòng)汽車(chē)的電池組有數(shù)百個(gè)電芯的串聯(lián)連接,要許多通道來(lái)測(cè)量電壓。由于被測(cè)量的電池電壓有累積電勢(shì),而每個(gè)電池的積累電勢(shì)都不同,這使得它不可能采用單向補(bǔ)償方法消除誤差。
圖3OCV曲線和每毫伏電壓的SOC的變化(在25℃測(cè)量,休息時(shí)間3小時(shí))
(2)電壓測(cè)量要高精度(特別是關(guān)于C/LiFePO4電池)。SOC估算對(duì)電池電壓精度提出了很高的要求。這里我們以C/LFP和LTO/NCM型電池為例。圖3顯示了電池C/LiFePO4和LTO/NCM的開(kāi)路電壓(OCV)以及每mV電壓對(duì)應(yīng)的SOC變化。從圖中我們可以看到LTO/NCM的OCV曲線的斜率相對(duì)陡峭,且大多數(shù)SOC范圍內(nèi),每毫伏的電壓變化對(duì)應(yīng)的最大SOC率范圍低于0.4%(除了SOC60~70%)。因此,假如電池電壓的測(cè)量精度為10mV,那么通過(guò)OCV估計(jì)方法獲得的SOC誤差低于4%。因此,關(guān)于LTO/NCM電池,電池電壓的測(cè)量精度要小于10mV。但C/LiFePO4OCV曲線的斜率相對(duì)平緩,并且在大多數(shù)范圍內(nèi)(除了SOC<40%和65~80%),每毫伏電壓的最大相應(yīng)SOC變化率達(dá)到4%。因此,電池電壓的采集精度要求很高,達(dá)到1mV左右。目前,電池電壓的大部分采集精度僅達(dá)到5mV。在文獻(xiàn)[47]和[48]中,分別總結(jié)了鋰離子電池組和燃料動(dòng)力電池組的電壓測(cè)量方法。這些方法包括電阻分壓器方法,光耦合隔離放大器方法,離散晶體管的方法[49],分布式測(cè)量方[50],光耦合中繼方法[51]等等。目前,電池的電壓和溫度采樣已形成芯片產(chǎn)業(yè)化,表1比較了大多數(shù)BMS所用芯片的性能。
表1統(tǒng)計(jì)電池管理和均衡芯片
3.2數(shù)據(jù)采樣頻率同步性
信號(hào)的采樣頻率與同步對(duì)數(shù)據(jù)實(shí)時(shí)分析和處理有影響。設(shè)計(jì)BMS時(shí),要對(duì)信號(hào)的采樣頻率和同步精度提出要求。但目前部分BMS設(shè)計(jì)過(guò)程中,對(duì)信號(hào)采樣頻率和同步?jīng)]有明確要求。電池系統(tǒng)信號(hào)有多種,同時(shí)電池管理系統(tǒng)一般為分布式,假如電流的采樣與單片電壓采樣分別在不同的電路板上;信號(hào)采集過(guò)程中,不同控制子板信號(hào)會(huì)存在同步問(wèn)題,會(huì)對(duì)內(nèi)阻的實(shí)時(shí)監(jiān)測(cè)算法出現(xiàn)影響。同一單片電壓采集子板,一般采用巡檢方法,單體電壓之間也會(huì)存在同步問(wèn)題,影響不一致性分析。系統(tǒng)對(duì)不同信號(hào)的數(shù)據(jù)采樣頻率和同步要求不同,對(duì)慣性大的參量要求較低,如純電動(dòng)汽車(chē)電池正常放電的溫升數(shù)量級(jí)為1℃/10min,考慮到溫度的安全監(jiān)控,同時(shí)考慮BMS溫度的精度(約為1℃),溫度的采樣間隔可定為30s(對(duì)混合動(dòng)力鋰電池,溫度采樣率要更高一些)。
電壓與電流信號(hào)變化較快,采樣頻率和同步性要求很高。由交流阻抗分析可知,動(dòng)力鋰電池的歐姆內(nèi)阻響應(yīng)在ms級(jí),SEI膜離子傳輸阻力電壓響應(yīng)為10ms級(jí),電荷轉(zhuǎn)移(雙電容效應(yīng))響應(yīng)為1~10s級(jí),擴(kuò)散過(guò)程響應(yīng)為min級(jí)。目前,電動(dòng)汽車(chē)加速時(shí),驅(qū)動(dòng)電機(jī)的電流從最小變化到最大的響應(yīng)時(shí)間約為0.5s,電流精度要求為1%左右,綜合考慮變載工況的情況,電流采樣頻率應(yīng)取10~200Hz。單片信息采集子板電壓通道數(shù)一般為6的倍數(shù),目前最多為24個(gè)。一般純電動(dòng)乘用車(chē)電池由約100節(jié)電池串聯(lián)組成,單體電池信號(hào)采集要多個(gè)采集子板。為了保證電壓同步,每個(gè)采集子板中單體間的電壓采樣時(shí)間差越小越好,一個(gè)巡檢周期最好在25ms內(nèi)。子板之間的時(shí)間同步可以通過(guò)發(fā)送一幀CAN參考幀來(lái)實(shí)現(xiàn)。數(shù)據(jù)更新頻率應(yīng)為10Hz以上。
包括電池狀態(tài)包括SOH(健康狀態(tài)估計(jì))、SOS(安全狀態(tài)估計(jì))、SOF(功能狀態(tài)估計(jì))及SOE(可用能量狀態(tài)估計(jì))。這些功能是期望BMS具備的,但實(shí)際應(yīng)用中,出于客戶要求、車(chē)型要求以及成本等等的考慮,實(shí)際設(shè)計(jì)到系統(tǒng)中的可能只是其中的幾個(gè)。
3.3電池狀態(tài)估計(jì)
電池狀態(tài)包括電池溫度、SOC(荷電狀態(tài)估計(jì))、SOH(健康狀態(tài)估計(jì))、SOS(安全狀態(tài)估計(jì))、SOF(功能狀態(tài)估計(jì))及SOE(可用能量狀態(tài)估計(jì))。各種狀態(tài)估計(jì)之間的關(guān)系如圖4所示。電池溫度估計(jì)是其他狀態(tài)估計(jì)的基礎(chǔ),SOC估計(jì)受到SOH的影響,SOF是由SOC、SOH、SOS以及電池溫度共同確定的,SOE則與SOC、SOH、電池溫度、未來(lái)工況有關(guān)。
圖4.BMS狀態(tài)估計(jì)算法框架
3.3.1電池溫度估計(jì)
溫度對(duì)電池性能影響較大,目前一般只能測(cè)得電池表面溫度,而電池內(nèi)部溫度要使用熱模型進(jìn)行估計(jì)。常用的電池?zé)崮P桶憔S模型(集總參數(shù)模型)、一維乃至三維模型。零維模型可以大致計(jì)算電池充放電過(guò)程中的溫度變化,估計(jì)精度有限,但模型計(jì)算量小,因此可用于實(shí)時(shí)的溫度估計(jì)。一維、二維及三維模型要使用數(shù)值方法對(duì)傳熱微分方程進(jìn)行求解,對(duì)電池進(jìn)行網(wǎng)格劃分,計(jì)算電池的溫度場(chǎng)分布,同時(shí)還需考慮電池結(jié)構(gòu)對(duì)傳熱的影響(結(jié)構(gòu)包括內(nèi)核、外殼、電解液層等)。一維模型中只考慮電池在一個(gè)方向的溫度分布,在其他方向視為均勻。二維模型考慮電池在兩個(gè)方
向的溫度分布,對(duì)圓柱形電池來(lái)說(shuō),軸向及徑向的溫度分布即可反映電池內(nèi)部的溫度場(chǎng)。二維模型一般用于薄片電池的溫度分析。三維模型可以完全反映方形電池內(nèi)部的溫度場(chǎng),仿真精度較高,因而研究較多。但三維模型的計(jì)算量大,無(wú)法應(yīng)用于實(shí)時(shí)溫度估計(jì),只能用于在實(shí)驗(yàn)室中進(jìn)行溫度場(chǎng)仿真。為了讓三維模型的計(jì)算結(jié)果實(shí)時(shí)應(yīng)用,研究人員利用三維模型的溫度場(chǎng)計(jì)算結(jié)果,將電池產(chǎn)熱功率和內(nèi)外溫差的關(guān)系用傳遞函數(shù)表達(dá),通過(guò)產(chǎn)熱功率和電池表面溫度估計(jì)電池內(nèi)部的溫度,具有在BMS中應(yīng)用的潛力。圖5所示為電池內(nèi)部溫度的估計(jì)流程。
圖5電池內(nèi)部溫度估計(jì)流程
一般地,鋰離子電池適宜的工作溫度為15~35℃,而電動(dòng)汽車(chē)的實(shí)際工作溫度為-30~50℃,因此必須對(duì)電池進(jìn)行熱管理,低溫時(shí)要加熱,高溫時(shí)要冷卻。熱管理包括設(shè)計(jì)與控制兩方面,其中,熱管理設(shè)計(jì)不屬于本文內(nèi)容。溫度控制是通過(guò)測(cè)溫元件測(cè)得電池組不同位置的溫度,綜合溫度分布情況,熱管理系統(tǒng)控制電路進(jìn)行散熱,熱管理的執(zhí)行部件一般有風(fēng)扇、水/油泵、制冷機(jī)等。比如,可以根據(jù)溫度范圍進(jìn)行分檔控制。Volt插電式混合動(dòng)力鋰電池?zé)峁芾矸譃?種模式:主動(dòng)(制冷散熱)、被動(dòng)(風(fēng)扇散熱)和不冷卻模式,當(dāng)動(dòng)力鋰電池溫度超過(guò)某預(yù)先設(shè)定的被動(dòng)冷卻目標(biāo)溫度后,被動(dòng)散熱模式啟動(dòng);而當(dāng)溫度繼續(xù)升高至主動(dòng)冷卻目標(biāo)溫度以上時(shí),主動(dòng)散熱模式啟動(dòng)。
3.2荷電狀態(tài)(SOC)估計(jì)
SOC(StateofCharge),可用電量占據(jù)電池最大可用容量的比例,通常以百分比表示,100%表示完全充電,0%表示完全放電。
這是針對(duì)單個(gè)電池的含義,關(guān)于電池模塊(或電池組,由于電池組由多個(gè)模塊組成,因此從模塊SOC計(jì)算電池組的SOC就像電池電池單體SOC估計(jì)模塊SOC相同),情況有一點(diǎn)復(fù)雜。在SOC估計(jì)方法的最后一節(jié)討論。
目前,對(duì)SOC的研究已經(jīng)基本成熟,SOC算法重要分為兩大類(lèi),一類(lèi)為單一SOC算法,另一類(lèi)為多種單一SOC算法的融合算法。單一SOC算法包括安時(shí)積分法、開(kāi)路電壓法、基于電池模型估計(jì)的開(kāi)路電壓法、其他基于電池性能的SOC估計(jì)法等。融合算法包括簡(jiǎn)單的修正、加權(quán)、卡爾曼濾波(或擴(kuò)展卡爾曼濾波)以及滑模變結(jié)構(gòu)方法等。
1)放電測(cè)試方法
確定電池SOC的最可靠方法是在受控條件下進(jìn)行放電測(cè)試,即指定的放電速率和環(huán)境溫度。這個(gè)測(cè)試可以準(zhǔn)確的計(jì)算電池的剩余電量SOC,但所消耗的時(shí)間相當(dāng)長(zhǎng),并且在測(cè)試完畢以后電池里面的電量全部放掉,因此這個(gè)方法只在實(shí)驗(yàn)室中用來(lái)標(biāo)定驗(yàn)證電池的標(biāo)稱容量,無(wú)法用于設(shè)計(jì)BMS做車(chē)輛電池電量的在線估計(jì)。
2)安時(shí)積分法
安時(shí)積分計(jì)算方法為:
式中,SOC為荷電狀態(tài);SOC0為起始時(shí)刻(t0)的荷電狀態(tài);CN為額定容量(為電池當(dāng)時(shí)標(biāo)準(zhǔn)狀態(tài)下的容量,隨壽命變化);η為庫(kù)侖效率,放電為1,充電小于1;I為電流,充電為負(fù),放電為正。
在起始荷電狀態(tài)SOC0比較準(zhǔn)確情況下,安時(shí)積分法在一段時(shí)間內(nèi)具有相當(dāng)好的精度(重要與電流傳感器采樣精度、采樣頻率有關(guān))。但是,安時(shí)積分法的重要缺點(diǎn)為:起始SOC0影響荷電狀態(tài)的估計(jì)精度;庫(kù)侖效率η受電池的工作狀態(tài)影響大(如荷電狀態(tài)、溫度、電流大小等),η難于準(zhǔn)確測(cè)量,會(huì)對(duì)荷電狀態(tài)誤差有累積效應(yīng);電流傳感器精度,特別是偏差會(huì)導(dǎo)致累計(jì)效應(yīng),影響荷電狀態(tài)的精度。因此,單純采用安時(shí)積分法很難滿足荷電狀態(tài)估計(jì)的精度要求。
3)開(kāi)路電壓(OCV)法
鋰離子電池的荷電狀態(tài)與鋰離子在活性材料中的嵌入量有關(guān),與靜態(tài)熱力學(xué)有關(guān),因此充分靜置后的開(kāi)路電壓可以認(rèn)為達(dá)到平衡電動(dòng)勢(shì),OCV與荷電狀態(tài)具有一一對(duì)應(yīng)的關(guān)系,是估計(jì)荷電狀態(tài)的有效方法。但是有些種類(lèi)電池的OCV與充放電過(guò)程(歷史)有關(guān),如LiFePO4/C電池,充電OCV與放電OCV具有滯回現(xiàn)象(與鎳氫電池類(lèi)似),并且電壓曲線平坦,因而SOC估計(jì)精度受到傳感器精度的影響嚴(yán)重,這些都要進(jìn)一步研究。開(kāi)路電壓法最大的優(yōu)點(diǎn)是荷電狀態(tài)估計(jì)精度高,但是它的顯著缺點(diǎn)是要將電池長(zhǎng)時(shí)靜置以達(dá)到平衡,電池從工作狀態(tài)恢復(fù)到平衡狀態(tài)一般要一按時(shí)間,與荷電狀態(tài)、溫度等狀態(tài)有關(guān),低溫下要數(shù)小時(shí)以上,所以該方法單獨(dú)使用只適于電動(dòng)汽車(chē)駐車(chē)狀態(tài),不適合動(dòng)態(tài)估計(jì)。
4)基于電池模型的開(kāi)路電壓法
通過(guò)電池模型可以估計(jì)電池的開(kāi)路電壓,再根據(jù)OCV與SOC的對(duì)應(yīng)關(guān)系可以估計(jì)當(dāng)前電池的SOC。等效電路模型是最常用的電池模型。
關(guān)于這種方法,電池模型的精度和復(fù)雜性非常重要。華等人收集了12個(gè)常用等效電路模型,包括組合模型,Rint模型(簡(jiǎn)單模型),具有零狀態(tài)滯后模型的Rint模型,具有單態(tài)滯后模型的Rint模型,具有兩個(gè)低通濾波器增強(qiáng)型自校正(ESC)模型,具有四個(gè)低通濾波器的ESC模型,一階RC模型,一個(gè)狀態(tài)滯后的一階RC模型,二階RC模型,具有單態(tài)滯后的二階RC模型,三階RC模型和具有單態(tài)滯后的三階RC模型。
電化學(xué)模型是建立在傳質(zhì)、化學(xué)熱力學(xué)、動(dòng)力學(xué)基礎(chǔ)上,涉及電池內(nèi)部材料的參數(shù)較多,而且很難準(zhǔn)確獲得,模型運(yùn)算量大,一般用于電池的性能分析與設(shè)計(jì)。
假如電池模型參數(shù)已知,則很容易找到電池OCV。然后使用通過(guò)實(shí)驗(yàn)得出的OCV-SOC查找表,可以容易地找到電池SOC。研究人員使用這種方法,并分別采取RINT模型,一階RC,二階RC模型,發(fā)現(xiàn)使用二階RC模型的最大估計(jì)誤差是4.3%,而平均誤差是1.4%。
圖6充放電C/的LiFePO的OCV曲線4(在25℃測(cè)量,休息時(shí)間3小時(shí))
5)神經(jīng)網(wǎng)絡(luò)模型方法
神經(jīng)網(wǎng)絡(luò)模型法估計(jì)SOC是利用神經(jīng)網(wǎng)絡(luò)的非線性映射特性,在建立模型時(shí)不用具體考慮電池的細(xì)節(jié)問(wèn)題,方法具有普適性,適用于各種電池的SOC估計(jì),但是要大量樣本數(shù)據(jù)對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,且估算誤差受訓(xùn)練數(shù)據(jù)和訓(xùn)練方法的影響很大,且神經(jīng)網(wǎng)絡(luò)法運(yùn)算量大,要強(qiáng)大的運(yùn)算芯片(如DSP等)。
6)模糊邏輯方法
模糊邏輯法基本思路就是根據(jù)大量試驗(yàn)曲線、相關(guān)經(jīng)驗(yàn)及可靠的模糊邏輯理論依據(jù),用模糊邏輯模擬人的模糊思維,最終實(shí)現(xiàn)SOC預(yù)測(cè),但該算法首先要對(duì)電池本身有足夠多的了解,計(jì)算量也較大。
7)基于電池性能的SOC估計(jì)法
基于電池性能的SOC估計(jì)方法包括交流阻抗法、直流內(nèi)阻法和放電試驗(yàn)法。交流阻抗法是通過(guò)對(duì)交流阻抗譜與SOC的關(guān)系進(jìn)行SOC估計(jì)。直流內(nèi)阻法通過(guò)直流內(nèi)阻與電池SOC的關(guān)系進(jìn)行估計(jì)。
交流阻抗及直流內(nèi)阻一般僅用于電池離線診斷,很難直接應(yīng)用在車(chē)用SOC實(shí)時(shí)估計(jì)中,這是因?yàn)椋捎媒涣髯杩沟姆椒ㄒ行盘?hào)發(fā)生器,會(huì)新增成本;電池阻抗譜或內(nèi)阻與SOC關(guān)系復(fù)雜,影響因素多(包括內(nèi)阻一致性);電池內(nèi)阻很小,車(chē)用電池在毫歐級(jí),很難準(zhǔn)確獲得;鋰離子電池內(nèi)阻在很寬范圍內(nèi)變化較小,很難識(shí)別。
8)融合算法
目前融合算法包括簡(jiǎn)單修正、加權(quán)、卡爾曼濾波或擴(kuò)展卡爾曼濾波(EKF)、滑模變結(jié)構(gòu)等。簡(jiǎn)單修正的融合算法重要包括開(kāi)路電壓修正、滿電修正的安時(shí)積分法等。
關(guān)于純電動(dòng)汽車(chē)電池,工況較為簡(jiǎn)單,車(chē)輛運(yùn)行時(shí)除了少量制動(dòng)回饋充電外重要處于放電態(tài),站上充電時(shí)電池處于充電態(tài),開(kāi)路電壓的滯回效應(yīng)比較容易估計(jì);電池容量大,安時(shí)積分的誤差相對(duì)較?。怀錆M電的機(jī)率大,因此,采用開(kāi)路電壓標(biāo)定初值和滿電修正的安時(shí)積分方法可以滿足純電動(dòng)汽車(chē)電池SOC的估計(jì)精度要求。
關(guān)于混合動(dòng)力車(chē)電池,由于工況復(fù)雜,運(yùn)行中為了維持電量不變,電流有充有放;停車(chē)時(shí)除了維護(hù)外,沒(méi)有站上充電的機(jī)會(huì);電池容量較小,安時(shí)積分的相對(duì)誤差大。因此,簡(jiǎn)單的開(kāi)路電壓修正方法還不能滿足混合動(dòng)力車(chē)電池SOC的估計(jì)精度要求,要其他融合方法解決。
加權(quán)融合算法是將不同方法得到的SOC按一定權(quán)值進(jìn)行加權(quán)估計(jì)的方法。MarkVerbrugge等采用安時(shí)積分獲得SOCc與采用具有滯回的一階RC模型獲得SOCv的加權(quán)方法估計(jì)SOC,計(jì)算公式為
式中,w為權(quán)值。該算法已經(jīng)在GM混合動(dòng)力系統(tǒng)中應(yīng)用。
卡爾曼濾波是一種常用的融合算法。由于SOC不能直接測(cè)量,目前一般將兩種估計(jì)SOC的方法融合起來(lái)估計(jì)。SOC被當(dāng)成電池系統(tǒng)的一個(gè)內(nèi)部狀態(tài)分析。又由于電池系統(tǒng)為非線性系統(tǒng),因此采用擴(kuò)展的卡爾曼濾波方法,通常采用安時(shí)積分與電池模型組成系統(tǒng)進(jìn)行計(jì)算。Plett等研究了安時(shí)積分與組合模型、Rint模型(簡(jiǎn)單模型)、零狀態(tài)滯回Rint模型、一狀態(tài)滯回Rint模型、加強(qiáng)自修正模型的卡爾曼濾波融合算法。Wang等研究了安時(shí)積分與二階RC模型的卡爾曼濾波融合算法。
夏超英等研究了安時(shí)積分與一階RC模型的卡爾曼濾波算法,指出EKF作為一個(gè)狀態(tài)觀測(cè)器,其意義在于用安時(shí)積分法計(jì)算SOC的同時(shí),估計(jì)出電容上的電壓,從而得到電池端電壓的估計(jì)值作為校正SOC的依據(jù),同時(shí)考慮噪聲及誤差的大小,確定每一步的濾波增益,得到開(kāi)路電壓法在計(jì)算SOC時(shí)應(yīng)占的權(quán)重,從而得到SOC的最優(yōu)估計(jì)。這樣就把安時(shí)積分法和開(kāi)路電壓有機(jī)地結(jié)合起來(lái),用開(kāi)路電壓克服了安時(shí)積分法有累積誤差的缺點(diǎn),實(shí)現(xiàn)了SOC的閉環(huán)估計(jì)。同時(shí),由于在計(jì)算過(guò)程中考慮了噪聲的影響,所以算法對(duì)噪聲有很強(qiáng)的抑制用途。這是當(dāng)前應(yīng)用最廣的SOC估計(jì)方法。
Charkhgard等采用卡爾曼濾波融合了安時(shí)積分與神經(jīng)網(wǎng)絡(luò)模型,卡爾曼濾波用于SOC計(jì)算的核心是建立合理的電池等效模型,建立一組狀態(tài)方程,因此算法對(duì)電池模型依賴性較強(qiáng),要獲得準(zhǔn)確的SOC,要建立較為準(zhǔn)確的電池模型,為了節(jié)省計(jì)算量,模型還不能太復(fù)雜。Ouyang等提出一種實(shí)時(shí)性好的基于電化學(xué)機(jī)理的等效電路模型的SOC卡爾曼濾波算法,在保證計(jì)算速度基礎(chǔ)上,提高了SOC的估計(jì)效果,尤其是低SOC區(qū)的估計(jì)精度。但是卡爾曼濾波法的缺點(diǎn)還有卡爾曼增益不好確定,假如選擇不好狀態(tài)將發(fā)散。Kim等提出采用滑模技術(shù)克服卡爾曼濾波的缺點(diǎn),據(jù)稱該方法關(guān)于模型參數(shù)不確定和干擾具有較強(qiáng)的魯棒性。
9)電池組SOC估計(jì)
電池組由多節(jié)電池串并聯(lián)組成,由于電池單體間存在不一致性,成組后的電池組SOC計(jì)算更為復(fù)雜。由多個(gè)電芯并聯(lián)連接的電池模塊可以被認(rèn)為是具有高容量的單個(gè)電池,并且由于并聯(lián)連接的自平衡特性,可以像單個(gè)電池相同估計(jì)SOC。
圖7電池模塊的無(wú)用容量和剩余容量(以2個(gè)電池的電池模塊為例)
在串聯(lián)連接條件下,粗略的估計(jì)電池模塊的SOC也可以像單體電池相同,但考慮到電池的均勻性,情形會(huì)有些不同。假設(shè)電池模塊中每個(gè)單體電池的容量和SOC是已知的。假如有一個(gè)非常高效且無(wú)損的能量均衡裝置,則電池模塊的SOC:
其中,SOCM表示電池模塊的SOC,SOCi表示第i個(gè)電池單元的SOC,Ci表示第i個(gè)電池單體的容量。假如平衡裝置不是那么有效,真正的電池模塊的SOC與該平衡裝置的實(shí)際性能有關(guān)。假如只有耗散式的被動(dòng)均衡功能或者沒(méi)有均衡功能,則電芯中存在一部分無(wú)法利用的容量如圖6所示,并且隨著電池差異性的加劇,這種浪費(fèi)的容量的比例會(huì)越來(lái)越大。因此,電池模塊的容量表示為:
電池模塊可用容量表示為:
電池模組的荷電狀態(tài)表示為:
由此,在每一節(jié)電池單體SOC都可估計(jì)的前提下,就可以得到電池組的SOC值。要獲取單體的SOC值,最直接的方法就是應(yīng)用上述SOC估計(jì)方法中的一種,分別估計(jì)每一個(gè)單體的SOC,但這種方法的計(jì)算量太大。為了減小計(jì)算量,部分文獻(xiàn)[43~45]在估計(jì)電池成組的SOC方法上做了一些改進(jìn)研究。Dai等[44]采用一個(gè)EKF估計(jì)電池組平均SOC,用另一個(gè)EKF估計(jì)每個(gè)單體SOC與平均SOC之差ΔSOC。估計(jì)ΔSOC的EKF中要估計(jì)的狀態(tài)量只有一個(gè),因此算法的計(jì)算量較小。另外,考慮到ΔSOC的變化很慢,采用雙時(shí)間尺度的方法可以進(jìn)一步減小計(jì)算量。Zheng等提出了一種M+D模型,即一個(gè)相對(duì)復(fù)雜的電池單體平均模型M,和一個(gè)簡(jiǎn)單的單體差異模型D,利用最小二乘法計(jì)算單體與“平均單體”之間的差值ΔOCV,通過(guò)ΔSOC與ΔOCV的關(guān)系,可以計(jì)算每個(gè)單體的SOC值。
表2各種SOC估計(jì)方法比較
表3不同SOC估計(jì)方法的SOC估計(jì)誤差
表2中比較了不同的SOC估算算法。表3總結(jié)了每種方法的SOC估計(jì)誤差。
綜合比較上述常用的SOC估計(jì)方法,卡爾曼濾波等基于電池模型的SOC估計(jì)方法精確可靠,配合開(kāi)路電壓駐車(chē)修正是目前的主流方法。
3.3健康狀態(tài)(SOH)估計(jì)
健康狀態(tài)是指電池當(dāng)前的性能與正常設(shè)計(jì)指標(biāo)的偏離程度。電池老化是電池正常的性能衰減,不能完全代表其健康狀態(tài)。而目前多數(shù)SOH的含義僅限于電池老化的范疇,沒(méi)有真正涉及電池的健康狀況(如健康、亞健康、輕微問(wèn)題、嚴(yán)重問(wèn)題等),因此目前的算法應(yīng)該稱為壽命狀態(tài)。
耐久性是當(dāng)前業(yè)界研究熱點(diǎn),表征電池壽命的重要參數(shù)是容量和內(nèi)阻。一般地,能量型電池的性能衰減用容量衰減表征,功率型電池性能衰減用電阻變化表征。為了估計(jì)電池的衰減性能,首先要了解電池的衰減機(jī)理。
鋰離子電池衰減機(jī)理。鋰離子電池為“搖椅式”電池,正負(fù)極的活性材料可以看作容納鋰離子的兩個(gè)水桶,鋰離子相當(dāng)于桶里的水。電池的性能衰減可以理解為“水”變少(即活性鋰離子損失),或“桶”變?。ㄕ龢O或負(fù)極活性物質(zhì)變少),如下圖所示。導(dǎo)致活性鋰離子損失的重要原因是:電極與電解液副反應(yīng)形成鈍化膜(如SEI膜);由于充放電電池膨脹收縮疲勞導(dǎo)致電極龜裂,導(dǎo)致電極與電解液副反應(yīng)形成新的SEI膜,消耗鋰離子;不當(dāng)充電導(dǎo)致的析鋰與電解液反應(yīng)消耗鋰離子。導(dǎo)致活性材料損失的重要原因包括:材料中的錳、鐵或鎳等離子溶解;活性材料顆粒脫落;活性材料晶格塌陷。目前SOH估計(jì)方法重要分為耐久性相關(guān)經(jīng)驗(yàn)?zāi)P凸烙?jì)法和基于電池模型的參數(shù)辨識(shí)方法。
鋰離子電池雙水箱模型
1)耐久性相關(guān)經(jīng)驗(yàn)?zāi)P凸烙?jì)法
耐久性相關(guān)經(jīng)驗(yàn)?zāi)P凸烙?jì)法是基于電池耐久性測(cè)試數(shù)據(jù)標(biāo)定獲得的模型,直接預(yù)測(cè)容量衰減和內(nèi)阻的變化。電池的耐久性模型可以分為耐久性機(jī)理模型和耐久性外特性模型,兩者的重要差別在于,前者側(cè)重于對(duì)電池內(nèi)部副反應(yīng)機(jī)理的研究,并以SEI膜內(nèi)阻、離子濃度等微觀量為觀測(cè)對(duì)象;而后者從試驗(yàn)規(guī)律出發(fā),重點(diǎn)關(guān)注電池循環(huán)過(guò)程中表現(xiàn)出來(lái)的容量衰減與內(nèi)阻新增。有文獻(xiàn)根據(jù)正負(fù)極衰老機(jī)理,基于循環(huán)鋰離子損失機(jī)理以及電池內(nèi)部的材料腐蝕機(jī)理,建立了電池SEI膜內(nèi)阻新增模型以及循環(huán)衰減后的端電壓模型。由于詳細(xì)的鋰離子電池衰減機(jī)理十分復(fù)雜,目前還很難準(zhǔn)確確定模型的參數(shù),同時(shí)運(yùn)算量也較大,一般不用于車(chē)用電池管理中。
基于電池外特性的模型,已經(jīng)有較多文獻(xiàn)涉及,最常見(jiàn)的性能衰減模型是基于Arrhenius規(guī)律的模型。Toshiba的手冊(cè)中給出了鈷酸鋰離子電池貯存壽命模型
式中,Closs為容量損失百分比,%;T為溫度,K;t為時(shí)間,月。Bloom等進(jìn)行了不同環(huán)境溫度下電池衰減率的試驗(yàn)與分析,試驗(yàn)了以溫度為加速應(yīng)力的電池容量衰減模型,討論了電池容量保持率與環(huán)境溫度和循環(huán)時(shí)間的關(guān)系,提出
式中,Qloss為阻抗新增率(areaspecificimpedance,ASI)或最大輸出功率,W/s或W;A為常數(shù);Ea為反應(yīng)活化能,J;R是氣體常量,J/(mol·K);T是絕對(duì)溫度,K;t是時(shí)間,h;z是時(shí)間模態(tài),簡(jiǎn)單情況下可取1/2。其中A、Ea/R、z都可以通過(guò)試驗(yàn)數(shù)據(jù)用擬合的方法得到。
Wang等基于Bloom等的工作,提出了以Ah循環(huán)總量為變量的雙因素模型,將放電倍率乘入原有的時(shí)間項(xiàng),得到以溫度和放電倍率為加速應(yīng)力的電池壽命模型,實(shí)現(xiàn)了雙應(yīng)力加速下20%以內(nèi)的預(yù)測(cè)誤差,即
式中,Qloss為容量損失百分比,%;Ah為安時(shí)循環(huán)總量,Ah;其他參數(shù)的含義與前面公式相同。
Matsushima研究了大型鋰離子電池的性能衰減,發(fā)現(xiàn)容量的衰減與時(shí)間呈1/2次方關(guān)系,即Qloss=Kf×t^(1/2),并發(fā)現(xiàn)容量衰減在30%以內(nèi)時(shí)的系數(shù)Kf與容量衰減大于30%時(shí)的系數(shù)Kf不相同。前者較大,說(shuō)明前30%容量衰減的速度快。Kf服從阿倫尼烏斯定律。進(jìn)一步地,基于Arrhenius模型的擴(kuò)展模型,如黎火林、蘇金然根據(jù)對(duì)鈷酸鋰離子電池循環(huán)壽命的試驗(yàn),提出了如下的Arrhenius擴(kuò)展模型:
式中,Cτ為容量衰減率,%;nc為充放電循環(huán)壽命,次;T為絕對(duì)溫度,K;I為放電電流,A;a、b、c、l、m、f、α、β、λ、η均為常數(shù),可以通過(guò)試驗(yàn)擬合確定。
Li等考慮了電池壽命的多個(gè)影響因素,如環(huán)境溫度、放電倍率、放電截止電壓、充電倍率和充電截止電壓等,提出了基于耦合強(qiáng)度判斷和多因素輸入的壽命建模方法(模型中溫度的影響也參考了Arrhenius建模方法、電物理量的影響參考逆冪規(guī)律),并基于模型的因素敏感性分析了各因素對(duì)電池壽命影響的權(quán)重,耐久性模型對(duì)電池壽命的預(yù)測(cè)誤差為15%以內(nèi)。
Han等在分析電池性能衰減基礎(chǔ)上,認(rèn)為以石墨為負(fù)極的鋰離子電池的性能衰減重要是因?yàn)樨?fù)極SEI膜增厚消耗活性鋰離子,正常的SEI膜增厚消耗的鋰離子與時(shí)間呈1/2次方關(guān)系,但一般電池存在疲勞龜裂消耗了更多的活性鋰離子,因此性能衰減與時(shí)間的關(guān)系大于1/2次方?;贏rrhenius模型建立了4款以石墨為負(fù)極的鋰離子電池的性能衰減離散模型,并提出基于該離散模型的閉環(huán)參數(shù)修正方法,經(jīng)過(guò)幾次容量修正后,模型參數(shù)趨于穩(wěn)定。
其他外特性建模方法還有神經(jīng)網(wǎng)絡(luò)模型,如Jungst等在研究以LiNi0.8Co0.15Al0.05O2為正極材料的電池貯存壽命時(shí)建立的神經(jīng)網(wǎng)絡(luò)模型。借鑒機(jī)械疲勞研究成果,Safari等采用機(jī)械疲勞研究中常用的Palmgren-Miner(PM)法則預(yù)測(cè)電池容量在簡(jiǎn)單和復(fù)雜工況下的衰減情況,并與損害時(shí)間累計(jì)法(capacity-lossaccumulationovertime,LAT)進(jìn)行比較,結(jié)果表明PM法好于LAT法。
2)基于電池模型參數(shù)辨識(shí)法
參數(shù)辨識(shí)方法重要基于已有的電池模型,采用最優(yōu)狀態(tài)估計(jì)技術(shù),如最小二乘法、卡爾曼濾波等算法,根據(jù)運(yùn)行的數(shù)據(jù),對(duì)電池模型參數(shù)如容量、內(nèi)阻等進(jìn)行辨識(shí),從而獲得電池的壽命狀態(tài)。
Plett將內(nèi)阻和容量作為系統(tǒng)狀態(tài)參數(shù),構(gòu)建了內(nèi)阻估計(jì)狀態(tài)方程和容量估計(jì)狀態(tài)方程。采用擴(kuò)展的雙卡爾曼濾波方法獲得內(nèi)阻和容量。Gould也基于卡爾曼濾波方法和線性擬合方法辨識(shí)電池模型中的容量,繼而獲得容量隨運(yùn)行循環(huán)數(shù)的衰減情況。還有將電池等效電路模型中的內(nèi)阻視為低頻阻抗,采用滑模控制技術(shù)進(jìn)行辨識(shí)。Remmlinger介紹了一種用于混合動(dòng)力車(chē)的電池內(nèi)阻在線辨識(shí)方法,為了實(shí)現(xiàn)在線應(yīng)用,改進(jìn)了二階RC模型,然后基于特殊的負(fù)載信號(hào)(發(fā)動(dòng)機(jī)啟動(dòng)時(shí)的短暫電壓及電流),采用線性最小二乘法獲得電池模型的內(nèi)阻值。Verbrugge認(rèn)為假如對(duì)系統(tǒng)狀態(tài)參數(shù)、測(cè)量參數(shù)和噪音的演變過(guò)程比較了解,采用卡爾曼濾波優(yōu)化算法來(lái)遞歸辨識(shí)是最具有代表性的方法。假如缺乏對(duì)狀態(tài)參數(shù)、測(cè)量參數(shù)、噪音的全面了解,采用具有時(shí)間指數(shù)遺忘因子的加權(quán)遞推最小二乘法將是一個(gè)較為務(wù)實(shí)的方法。Wang發(fā)現(xiàn)Verbrugge采用疊加積分計(jì)算電壓的電池模型遞推算法在采樣頻率較高時(shí)變得不是很穩(wěn)定。據(jù)此改進(jìn)了電池模型的算法,并同樣也采用指數(shù)遺忘因子的加權(quán)遞推最小二乘法辨識(shí)電池參數(shù)(開(kāi)路電壓及內(nèi)阻等)。Chiang采用線性或非線性系統(tǒng)控制中常用的自適應(yīng)控制方法,建立了基于電池等效電路模型的參數(shù)估計(jì)框架,其中為了便于采用自適應(yīng)控制技術(shù),鋰離子電池等效電路模型采用狀態(tài)方程來(lái)描述,可用于在線監(jiān)測(cè)電池內(nèi)阻及OCV,分別用于確定SOH和SOC。Einhorn根據(jù)ΔSOC=ΔAh/C的關(guān)系,估計(jì)容量的大小,方法為:
式中,任意兩個(gè)時(shí)刻(α,β)的SOC由OCV查表得到,該方法可在實(shí)際中應(yīng)用,可以取若干個(gè)點(diǎn),兩兩搭配計(jì)算出多個(gè)容量值,再取平均值或中位數(shù)。這種方法比較簡(jiǎn)單,但關(guān)鍵在于OCV能否精確辨識(shí)。
3)電池組SOH估計(jì)
在不進(jìn)行均衡的條件下,電池組的容量衰減將遠(yuǎn)大于單體的容量衰減,鄭岳久等提出用兩維散點(diǎn)圖解釋電池組容量衰減的機(jī)理,指出電池組的容量衰減量為剩余充電電量最小單體的容量損失與單體間負(fù)極的活性鋰離子損失差異之和。為了得到電池組的容量,要首先獲得單體的容量。單體容量獲取可以通過(guò)上述基于模型參數(shù)的辨識(shí)方法獲得,也可以通過(guò)充電電壓曲線變換方法獲取。
3.4功能狀態(tài)(SOF)估計(jì)
估計(jì)電池SOF可以簡(jiǎn)單認(rèn)為是在估計(jì)電池的最大可用功率。一般而言,電池的最大可用功率受到電流、電壓、SOC、溫度等參數(shù)的限制,還與電池的老化程度、故障狀態(tài)等有關(guān)。常用的SOF估計(jì)方法可以分為基于電池MAP圖的方法和基于電池模型的動(dòng)態(tài)方法兩大類(lèi)。
1)基于MAP圖算法
基于電池測(cè)試(通常為HPPC測(cè)試)數(shù)據(jù)和最大、最小電壓限制,可以獲得在不同SOC下的最大充放電功率。在不同溫度、不同衰減程度下進(jìn)行電池測(cè)試,可以建立最大充放電功率與溫度、SOC、SOH的關(guān)系,得到最大充放電功率MAP圖?;贛AP圖,實(shí)車(chē)BMS可以通過(guò)插值得到電池的最大充放電功率,實(shí)現(xiàn)SOF估計(jì)。
Do等分別研究了不同SOC、溫度、累計(jì)放電容量下的最大充放電功率,并建立了最大充放電功率的函數(shù)解析式,實(shí)現(xiàn)了對(duì)SOF的預(yù)測(cè)。基于MAP圖的估計(jì)方法簡(jiǎn)單直接,但要存儲(chǔ)多維MAP圖,并且只考慮了靜態(tài)特性,而對(duì)動(dòng)態(tài)工況下的充放電功率估計(jì)有一定的局限性。
2)基于電池模型的動(dòng)態(tài)算法
根據(jù)電池模型,綜合考慮電池的電流、電壓、SOC、功率等限制,可以得到最大充放電電流,從而計(jì)算得到電池的最大充放電功率。韓雪冰根據(jù)電池模型,給出不同電流輸入情況下電池的端電壓情況,通過(guò)迭代計(jì)算,獲得電池單體在電壓限制條件下所允許的最大電流Imax,voltage和最小電流Imin,voltage,并且從電池的機(jī)理出發(fā),考慮了電池副反應(yīng)速率限制下的最大最小電流,其方法類(lèi)似于求取端電壓限制下的最大充放電電流。最后綜合考慮上述限制,獲得電池單體的最大最小電流。Sun等分析比較了幾種最大可用功率預(yù)測(cè)方法,包括HPPC法、SOC限制法、電壓限制法,以及基于動(dòng)態(tài)模型的多參數(shù)估計(jì)法,并通過(guò)HPPC測(cè)試得到充放電電阻,基于Rint模型,利用端電壓限制,估計(jì)電池的最大充放電功率。但這種方法估計(jì)的實(shí)際上是瞬時(shí)最大功率。并且由于Rint模型不夠精確,可能過(guò)于樂(lè)觀地估計(jì)了功率,還可能引起過(guò)充過(guò)放。與前述方法基本相同,Sun等認(rèn)為若允許的SOC變化范圍很大,計(jì)算出的最大最小電流可能很大,并不合理,應(yīng)與其他方法聯(lián)合使用。電壓限制法考慮在端電壓限制下一段時(shí)間內(nèi)的最大充放電功率,但仍使用了Rint模型,原理上與前述方法類(lèi)似,只是算法上并沒(méi)有采用迭代估計(jì)的方法,而是基于模型直接計(jì)算電流限值?;趧?dòng)態(tài)模型的多參數(shù)估計(jì)方法實(shí)質(zhì)上是基于Thevenin模型的電壓限制法,綜合SOC與電流的限制,進(jìn)而得到最大充放電電流。
以上是獲得電池單體最大充放電電流的方法。實(shí)車(chē)上電池組由眾多電池單體組成,由于單體之間存在不一致性,若要單獨(dú)計(jì)算每個(gè)電池單體的最大可用功率,計(jì)算量太大,
韓雪冰提出了充、放電關(guān)鍵電池單體的概念,以減少計(jì)算量。綜合考慮各種限制條件,可以得到最終的最大最小電流Imax,total和Imin,total,將Imax,total、Imin,total代入電池模型中可計(jì)算得到對(duì)應(yīng)的端電壓Umax,total,Umin,total,進(jìn)一步可以得到最大充放電功率,即
3.5剩余能量(RE)或能量狀態(tài)(SOE)估計(jì)
剩余能量(RE)或能量狀態(tài)(SOE)是電動(dòng)汽車(chē)剩余里程估計(jì)的基礎(chǔ),與百分?jǐn)?shù)的SOE相比,RE在實(shí)際的車(chē)輛續(xù)駛里程估計(jì)中的應(yīng)用更為直觀。在電動(dòng)汽車(chē)使用過(guò)程中,電池的剩余能量(RE)是指以某一工況行駛時(shí),從當(dāng)前時(shí)刻直至電池放電截止過(guò)程中,電池累計(jì)供應(yīng)的能量。RE可以由電池端電壓Ut與相應(yīng)的累積放電容量Qcum組成的坐標(biāo)系上的面積表示,如下圖所示。
電池剩余能量示意圖
當(dāng)前時(shí)刻t的電池端電壓為Ut(t),放電截止時(shí)刻記為tlim,對(duì)應(yīng)的端電壓為電池允許的最低放電電壓Ut(tlim)。當(dāng)前時(shí)刻的荷電狀態(tài)為SOC(t),已累積的放電容量為Qcum(t)。放電截止時(shí)刻tlim對(duì)應(yīng)的SOC和累積容量分別記為SOClim和Qcum(tlim)。圖中,端電壓變化表示為綠色曲線,曲線下圍成的(綠色斜線)面積對(duì)應(yīng)電池當(dāng)前時(shí)刻在此種工況下的剩余能量RE(t),其計(jì)算過(guò)程對(duì)應(yīng)公式如下。
由于不同的充放電情況對(duì)應(yīng)的端電壓響應(yīng)不同,使得電池在同一時(shí)刻t供應(yīng)的剩余能量RE(t)也不相同。此處用一組標(biāo)準(zhǔn)電流倍率下的放電情況作對(duì)照,標(biāo)準(zhǔn)情況的端電壓Ut,st如圖中藍(lán)色曲線(Qcum-Ut,st)所示。由電池SOC和標(biāo)準(zhǔn)放電容量的含義,此時(shí)放電截止位置的SOC值SOClim,st為0,累積放電容量Qcum,st等于電池標(biāo)準(zhǔn)容量Qst。標(biāo)準(zhǔn)放電工況下對(duì)應(yīng)的剩余能量REst(t)與之前的RE(t)有明顯的差距。電池剩余放電能量的差異同樣可以由當(dāng)前的RE(t)與理論上最大的剩余放電能量(電池開(kāi)路電壓OCV曲線圍成的面積,圖中黑色虛線所示)進(jìn)行比較。
不同放電工況下電池的能量損失不同,因此只有預(yù)測(cè)某一特定功率需求下的電池電壓響應(yīng)過(guò)程,才能獲得準(zhǔn)確的RE預(yù)測(cè)值。由于鋰離子電池的特點(diǎn),其電壓輸出受到很多變量的影響,如當(dāng)前SOC、溫度、衰減程度SOH,因此在能量預(yù)測(cè)過(guò)程中除傳統(tǒng)的SOC估計(jì)模型外,還要一個(gè)專(zhuān)門(mén)的電壓預(yù)測(cè)模型。劉光明等提出一種適用于動(dòng)態(tài)工況的電池剩余放電能量精確預(yù)測(cè)方法EPM(energypredictionmethod),如下圖所示,該方法基于當(dāng)前的電池狀態(tài)和未來(lái)的電流輸入,根據(jù)電池模型對(duì)未來(lái)放電過(guò)程的電壓變化進(jìn)行預(yù)測(cè),并計(jì)算放電過(guò)程中的累積能量。預(yù)測(cè)過(guò)程中,根據(jù)當(dāng)前的電壓、電流測(cè)量值對(duì)模型參數(shù)進(jìn)行修正,對(duì)端電壓序列與RE的預(yù)測(cè)結(jié)果進(jìn)行更新。
電池剩余放電能量預(yù)測(cè)方法(EPM)結(jié)構(gòu)
3.6故障診斷及安全狀態(tài)(SOS)估計(jì)
故障診斷是保證電池安全的必要技術(shù)之一。安全狀態(tài)估計(jì)屬于電池故障診斷的重要項(xiàng)目之一,BMS可以根據(jù)電池的安全狀態(tài)給出電池的故障等級(jí)。目前導(dǎo)致電池嚴(yán)重事故的是電池的熱失控,以熱失控為核心的安全狀態(tài)估計(jì)是最迫切的需求。導(dǎo)致熱失控的重要誘因有過(guò)熱、過(guò)充電、自引發(fā)內(nèi)短路等。研究過(guò)熱、內(nèi)短路的熱失控機(jī)理可以獲得電池的熱失控邊界。Feng等研究了一款三元電池的熱失控行為,獲得了3個(gè)特點(diǎn)溫度。Ouyang等研究了一款復(fù)合三元材料電池的過(guò)充電熱失控行為,獲得了4個(gè)過(guò)充電特點(diǎn)階段。這些研究為電池的安全狀態(tài)估計(jì)供應(yīng)了基礎(chǔ)。
故障診斷技術(shù)目前已發(fā)展成為一門(mén)新型交叉學(xué)科。故障診斷技術(shù)基于對(duì)象工作原理,綜合計(jì)算機(jī)網(wǎng)絡(luò)、數(shù)據(jù)庫(kù)、控制理論、人工智能等技術(shù),在許多領(lǐng)域中的應(yīng)用已經(jīng)較為成熟。鋰離子電池的故障診斷技術(shù)尚屬于發(fā)展階段,研究重要依賴于參數(shù)估計(jì)、狀態(tài)估計(jì)及基于相關(guān)經(jīng)驗(yàn)等方法(與上述SOH研究類(lèi)似)。Bohlen等通過(guò)電池內(nèi)阻模型的在線辨識(shí)實(shí)現(xiàn)了電池在線診斷。Sun等鉛酸電池的健康狀態(tài)(SOH)上,假設(shè)正常狀態(tài)的恒流充放電電壓曲線是光滑的,通過(guò)觀察其充放電曲線的變化辨識(shí)電池組可能存在的故障。電動(dòng)汽車(chē)動(dòng)力往往由成百上千個(gè)電池單體串并聯(lián)構(gòu)成,個(gè)體之間存在一定的差異,即不一致性。一般地,不一致性服從統(tǒng)計(jì)分布規(guī)律,這為電池組的故障診斷供應(yīng)了一種理論依據(jù)。
Zheng等建立了一種考慮接觸電阻的電池分頻模型,以代表低頻的電池平均模型研究電池組總體行為,以代表高頻的差異模型研究電池組一致性問(wèn)題,成功辨識(shí)了電池組內(nèi)的接觸電阻故障。Ouyang等同樣采用分頻模型,通過(guò)內(nèi)短路電池造成一致性變差特性來(lái)診斷內(nèi)短路的發(fā)生。