鉅大LARGE | 點(diǎn)擊量:2492次 | 2020年09月03日
詳細(xì)介紹鋰離子電池保護(hù)板均衡原理
1、鋰離子電池組保護(hù)板均衡充電原理結(jié)構(gòu)
采用單節(jié)鋰離子電池保護(hù)芯片設(shè)計(jì)的具備均衡充電能力的鋰離子電池組保護(hù)板結(jié)構(gòu)框圖如下圖1所示。
其中:1為單節(jié)鋰離子電池;2為充電過電壓分流放電支路電阻;3為分流放電支路控制用開關(guān)器件;4為過流檢測(cè)保護(hù)電阻;5為省略的鋰離子電池保護(hù)芯片及電路連接部分;6為單節(jié)鋰離子電池保護(hù)芯片(一般包括充電控制引腳CO,放電控制引腳DO,放電過電流及短路檢測(cè)引腳VM,電池正端VDD,電池負(fù)端VSS等);7為充電過電壓保護(hù)信號(hào)經(jīng)光耦隔離后形成并聯(lián)關(guān)系驅(qū)動(dòng)主電路中充電控制用MOS管柵極;鋰離子電池保護(hù)板均衡原理8為放電欠電壓、過流、短路保護(hù)信號(hào)經(jīng)光耦隔離后形成串聯(lián)關(guān)系驅(qū)動(dòng)主電路中放電控制用MOS管柵極;9為充電控制開關(guān)器件;10為放電控制開關(guān)器件;11為控制電路;12為主電路;13為分流放電支路。鋰離子電池保護(hù)板均衡原理單節(jié)鋰離子電池保護(hù)芯片數(shù)目依據(jù)鋰離子電池組電池?cái)?shù)目確定,串聯(lián)使用,分別對(duì)所對(duì)應(yīng)單節(jié)鋰離子電池的充放電、過流、短路狀態(tài)進(jìn)行保護(hù)。該系統(tǒng)在充電保護(hù)的同時(shí),通過保護(hù)芯片控制分流放電支路開關(guān)器件的通斷實(shí)現(xiàn)均衡充電,該方法有別于傳統(tǒng)的在充電器端實(shí)現(xiàn)均衡充電的做法,降低了鋰離子電池組充電器設(shè)計(jì)應(yīng)用的成本。
2硬件設(shè)計(jì)
2.1充電電路
當(dāng)鋰離子電池保護(hù)板均衡原理鋰離子電池組充電時(shí),外接電源正負(fù)極分別接電池組正負(fù)極BAT+和BAT-兩端,充電電流流經(jīng)電池組正極BAT+、電池組中單節(jié)鋰離子電池1~N、放電控制開關(guān)器件、充電控制開關(guān)器件、電池組負(fù)極BAT-,電流流向如圖2所示。
系統(tǒng)中控制電路部分單節(jié)鋰離子電池保護(hù)芯片的充電過電壓保護(hù)控制信號(hào)經(jīng)光耦隔離后并聯(lián)輸出,為主電路中充電開關(guān)器件的導(dǎo)通供應(yīng)柵極電壓;如某一節(jié)或幾節(jié)鋰離子電池在充電過程中先進(jìn)入過電壓保護(hù)狀態(tài),鋰離子電池保護(hù)板均衡原理則由過電壓保護(hù)信號(hào)控制并聯(lián)在單節(jié)鋰離子電池正負(fù)極兩端的分流放電支路放電,同時(shí)將串接在充電回路中的對(duì)應(yīng)單體鋰離子電池?cái)嚯x出充電回路。
2.2主電路及分流放電支路
鋰離子電池組串聯(lián)充電時(shí),忽略單節(jié)電池容量差別的影響,一般內(nèi)阻較小的電池先充滿。此時(shí),相應(yīng)的過電壓保護(hù)信號(hào)控制分流放電支路的開關(guān)器件閉合,在原電池兩端并聯(lián)上一個(gè)分流電阻。根據(jù)電池的PNGV等效電路模型,此時(shí)分流支路電阻相當(dāng)于先充滿的單節(jié)鋰離子電池的負(fù)載,該電池通過其放電,使電池端電壓維持在充滿狀態(tài)附近一個(gè)極小的范圍內(nèi)。假設(shè)第1節(jié)鋰離子電池先充電完成,進(jìn)入過電壓保護(hù)狀態(tài),則主電路及分流放電支路中電流流向如圖3所示。鋰離子電池保護(hù)板均衡原理當(dāng)所有單節(jié)電池均充電進(jìn)入過電壓保護(hù)狀態(tài)時(shí),全部單節(jié)鋰離子電池電壓大小在誤差范圍內(nèi)完全相等,各節(jié)保護(hù)芯片充電保護(hù)控制信號(hào)均變低,無法為主電路中的充電控制開關(guān)器件供應(yīng)柵極偏壓,使其關(guān)斷,主回路斷開,即實(shí)現(xiàn)均衡充電,充電過程完成。
單節(jié)電池兩端并接的放電支路電阻可根據(jù)鋰離子電池充電器的充電電壓大小以及鋰離子電池的參數(shù)和放電電流的大小計(jì)算得出。均衡電流應(yīng)合理選擇,假如太小,均衡效果不明顯;假如太大,系統(tǒng)的能量損耗大,均衡效率低,對(duì)鋰離子電池組熱管理要求高,一般電流大小可設(shè)計(jì)在50~100mA之間。
2.3放電電路
當(dāng)電池組放電時(shí),外接負(fù)載分別接電池組正負(fù)極BAT+和BAT-兩端,放電電流流經(jīng)電池組負(fù)極BAT-、充電控制開關(guān)器件、放電控制開關(guān)器件、電池組中單節(jié)鋰離子電池N~1和電池組正極BAT+,電流流向如圖4所示。鋰離子電池保護(hù)板均衡原理系統(tǒng)中控制電路部分單節(jié)鋰離子電池保護(hù)芯片的放電欠電壓保護(hù)、過流和短路保護(hù)控制信號(hào)經(jīng)光耦隔離后串聯(lián)輸出,為主電路中放電開關(guān)器件的導(dǎo)通供應(yīng)柵極電壓;一旦電池組在放電過程中遇到單節(jié)鋰離子電池欠電壓或者過流和短路等特殊情況,對(duì)應(yīng)的單節(jié)鋰離子電池放電保護(hù)控制信號(hào)變低,無法為主電路中的放電控制開關(guān)器件供應(yīng)柵極偏壓,使其關(guān)斷,主回路斷開,即結(jié)束放電使用過程。
一般鋰離子電池采用恒流-恒壓(TAPER)型充電控制,恒壓充電時(shí),充電電流近似指數(shù)規(guī)律減小。系統(tǒng)中充放電主回路的開關(guān)器件可根據(jù)外部電路要求滿足的最大工作電流和工作電壓選型。
鋰離子電池保護(hù)板均衡原理控制電路的單節(jié)鋰離子電池保護(hù)芯片可根據(jù)待保護(hù)的單節(jié)鋰離子電池的電壓等級(jí)、保護(hù)延遲時(shí)間等選型。分流放電支路電阻可采用功率電阻或電阻網(wǎng)絡(luò)實(shí)現(xiàn)。這里采用電阻網(wǎng)絡(luò)實(shí)現(xiàn)分流放電支路電阻較為合理,可以有效消除電阻偏差的影響,此外,還能起到降低熱功耗的用途。
3均衡充電保護(hù)板電路仿真
根據(jù)上述鋰離子電池保護(hù)板均衡原理,在Matlab/Simulink環(huán)境下搭建了系統(tǒng)仿真模型,模擬鋰離子電池組充放電過程中保護(hù)板工作的情況,驗(yàn)證該設(shè)計(jì)方法的可行性。為簡(jiǎn)單起見,給出了鋰離子電池組僅由2節(jié)鋰離子電池串聯(lián)的仿真模型,如圖5所示。
模型中用受控電壓源代替單節(jié)鋰離子電池,模擬電池充放電的情況。圖5中,Rs為串聯(lián)電池組的電池總內(nèi)阻,RL為負(fù)載電阻,Rd為分流放電支路電阻。所采用的單節(jié)鋰離子電池保護(hù)芯片S28241封裝為一個(gè)子系統(tǒng),使整體模型表達(dá)時(shí)更為簡(jiǎn)潔。
鋰離子電池保護(hù)板均衡原理保護(hù)芯片子系統(tǒng)模型重要用邏輯運(yùn)算模塊、符號(hào)函數(shù)模塊、一維查表模塊、積分模塊、延時(shí)模塊、開關(guān)模塊、數(shù)學(xué)運(yùn)算模塊等模擬了保護(hù)動(dòng)作的時(shí)序與邏輯。由于仿真環(huán)境與真實(shí)電路存在一定的差別,仿真時(shí)不要濾波和強(qiáng)弱電隔離,而且多余的模塊容易導(dǎo)致仿真時(shí)間的冗長(zhǎng)。因此,在實(shí)際仿真過程中,去除了濾波、光耦隔離、電平調(diào)理等電路,并把為大電流分流設(shè)計(jì)的電阻網(wǎng)絡(luò)改為單電阻,降低了仿真系統(tǒng)的復(fù)雜程度。建立完整的系統(tǒng)仿真模型時(shí),要注意不同模塊的輸入輸出數(shù)據(jù)和信號(hào)類型可能存在差異,必須正確排列模塊的連接順序,必要時(shí)進(jìn)行數(shù)據(jù)類型的轉(zhuǎn)換,模型中用電壓檢測(cè)模塊實(shí)現(xiàn)了強(qiáng)弱信號(hào)的轉(zhuǎn)換連接問題。
鋰離子電池保護(hù)板均衡原理仿真模型中受控電壓源的給定信號(hào)在波形大體一致的前提下可有微小差別,以代表電池個(gè)體充放電的差異。圖6為電池組中單節(jié)電池電壓檢測(cè)仿真結(jié)果,可見采用過流放電支路均充的辦法,該電路可正常工作。