鉅大LARGE | 點(diǎn)擊量:9446次 | 2019年06月19日
鋰電池充放電理論及電量計(jì)算方法詳解
1.1荷電狀態(tài)(State-Of-Charge;SOC)
荷電狀態(tài)可定義為電池中可用電能的狀態(tài),通常以百分比來(lái)表示。因?yàn)榭捎秒娔軙?huì)因充放電電流,溫度及老化現(xiàn)象而有不同,所以荷電狀態(tài)的定義也區(qū)分為兩種:絕對(duì)荷電狀態(tài)(AbsoluteState-Of-Charge;ASOC)及相對(duì)荷電狀態(tài)(RelativeState-Of-Charge;RSOC)。通常相對(duì)荷電狀態(tài)的范圍是0%-100%,而電池完全充電時(shí)是100%,完全放電時(shí)是0%。絕對(duì)荷電狀態(tài)則是一個(gè)當(dāng)電池制造完成時(shí),根據(jù)所設(shè)計(jì)的固定容量值所計(jì)算出來(lái)的的參考值。一個(gè)全新完全充電電池的絕對(duì)荷電狀態(tài)是100%;而老化的電池即便完全充電,在不同充放電情況中也無(wú)法到100%。
1.2最高充電電壓(MaxChargingVoltage)
最高充電電壓和電池的化學(xué)成分與特性有關(guān)。鋰電池的充電電壓通常是4.2V和4.35V,而若陰極、陽(yáng)極材料不同電壓值也會(huì)有所不同。
1.3完全充電(FullyCharged)
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
當(dāng)電池電壓與最高充電電壓差小于100mV,且充電電流降低至C/10,電池可視為完全充電。電池特性不同,完全充電條件也有所不同。
1.4最低放電電壓(MiniDischargingVoltage)
最低放電電壓可用截止放電電壓來(lái)定義,通常即是荷電狀態(tài)為0%時(shí)的電壓。此電壓值不是一固定值,而是隨著負(fù)載、溫度、老化程度或其他而改變。
1.5完全放電(FullyDischarge)
當(dāng)電池電壓小于或等于最低放電電壓時(shí),可稱為完全放電。
標(biāo)稱電壓:28.8V
標(biāo)稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應(yīng)用領(lǐng)域:勘探測(cè)繪、無(wú)人設(shè)備
1.6充放電率(C-Rate)
充放電率是充放電電流相對(duì)于電池容量的一種表示。例如,若用1C來(lái)放電一小時(shí)之后,理想的話,電池就會(huì)完全放電。不同充放電率會(huì)造成不同的可用容量。通常,充放電率愈大,可用容量愈小。
1.7循環(huán)壽命
循環(huán)次數(shù)是當(dāng)一個(gè)電池所經(jīng)歷完整充放電的次數(shù),是可由實(shí)際放電容量與設(shè)計(jì)容量來(lái)估計(jì)。每當(dāng)累積的放電容量等于設(shè)計(jì)容量時(shí),則循環(huán)次數(shù)一次。通常在500次充放電循環(huán)后,完全充電的電池容量約會(huì)下降10%~20%。
1.8自放電(Self-Discharge)
所有電池的自放電都會(huì)隨著溫度上升而增加。自放電基本上不是制造上的瑕疵,而是電池本身特性。然而制造過(guò)程中不當(dāng)?shù)奶幚硪矔?huì)造成自放電的增加。通常電池溫度每增加10°C,自放電率即倍增。鋰離子電池每個(gè)月自放電量約為1~2%,而各類鎳系電池則為每月10~15%自放電量。
2.1電量計(jì)功能簡(jiǎn)介
電池管理可視為是電源管理的一部分。電池管理中,電量計(jì)是負(fù)責(zé)估計(jì)電池容量。其基本功能為監(jiān)測(cè)電壓,充電/放電電流和電池溫度,并估計(jì)電池荷電狀態(tài)(SOC)及電池的完全充電容量(FCC)。有兩種典型估計(jì)電池荷電狀態(tài)的方法:開(kāi)路電壓法(OCV)和庫(kù)侖計(jì)量法。另一種方法是由RICHTEK所設(shè)計(jì)的動(dòng)態(tài)電壓算法。
2.2開(kāi)路電壓法
用開(kāi)路電壓法的電量計(jì),其實(shí)現(xiàn)方法較容易,可借著開(kāi)路電壓對(duì)應(yīng)荷電狀態(tài)查表而得到。開(kāi)路電壓的假設(shè)條件是電池休息約超過(guò)30分鐘時(shí)的電池端電壓。
不同的負(fù)載,溫度,及電池老化情況下,電池電壓曲線也會(huì)有所不同。所以一個(gè)固定的開(kāi)路電壓表無(wú)法完全代表荷電狀態(tài);不能單靠查表來(lái)估計(jì)荷電狀態(tài)。換言之,荷電狀態(tài)若只靠查表來(lái)估計(jì),誤差將會(huì)很大。
2.3庫(kù)侖計(jì)量法
庫(kù)侖計(jì)量法的操作原理是在電池的充電/放電路徑上的連接一個(gè)檢測(cè)電阻。ADC量測(cè)在檢測(cè)電阻上的電壓,轉(zhuǎn)換成電池正在充電或放電的電流值。實(shí)時(shí)計(jì)數(shù)器(RTC)則提供把該電流值對(duì)時(shí)間作積分,從而得知流過(guò)多少庫(kù)倫。
庫(kù)侖計(jì)量法可精確計(jì)算出充電或放電過(guò)程中實(shí)時(shí)的荷電狀態(tài)。藉由充電庫(kù)侖計(jì)數(shù)器和放電庫(kù)侖計(jì)數(shù)器,它可計(jì)算剩余電容量(RM)及完全充電容量(FCC)。同時(shí)也可用剩余電容量(RM)及完全充電容量(FCC)來(lái)計(jì)算出荷電狀態(tài),即(SOC=RM/FCC)。此外,它還可預(yù)估剩余時(shí)間,如電力耗竭(TTE)和電力充滿(TTF)。
主要有兩個(gè)因素造成庫(kù)倫計(jì)量法準(zhǔn)確度偏差。第一是電流感測(cè)及ADC量測(cè)中偏移誤差的累積。雖然以目前的技術(shù)此量測(cè)的誤差還算小,但若沒(méi)有消除它的好方法,則此誤差會(huì)隨時(shí)間增加而增加。
為消除累積誤差,在正常的電池操作中有三個(gè)可能可使用的時(shí)間點(diǎn):充電結(jié)束(EOC),放電結(jié)束(EOD)和休息(Relax)。充電結(jié)束條件達(dá)到表示電池已充滿電且荷電狀態(tài)(SOC)應(yīng)為100%。放電結(jié)束條件則表示電池已完全放電,且荷電狀態(tài)(SOC)應(yīng)該為0%;它可以是一個(gè)絕對(duì)的電壓值或者是隨負(fù)載而改變。達(dá)到休息狀態(tài)時(shí),則是電池?cái)麤](méi)有充電也沒(méi)有放電,而且保持這種狀態(tài)很長(zhǎng)一段時(shí)間。若使用者想用電池休息狀態(tài)來(lái)作庫(kù)侖計(jì)量法的誤差修正,則此時(shí)必須搭配開(kāi)路電壓表。下圖顯示了在上述狀態(tài)下的荷電狀態(tài)誤差是可以被修正的。
造成庫(kù)倫計(jì)量法準(zhǔn)確度偏差的第二主要因素是完全充電容量(FCC)誤差,它是由電池設(shè)計(jì)容量的值和電池真正的完全充電容量的差異。完全充電容量(FCC)會(huì)受到溫度,老化,負(fù)載等因素影響。所以,完全充電容量的再學(xué)習(xí)和補(bǔ)償方法對(duì)庫(kù)侖計(jì)量法是非常關(guān)鍵重要的。
2.4動(dòng)態(tài)電壓算法電量計(jì)
動(dòng)態(tài)電壓算法電量計(jì)僅根據(jù)電池電壓即可計(jì)算鋰電池的荷電狀態(tài)。此法是根據(jù)電池電壓和電池的開(kāi)路電壓之間的差值,來(lái)估計(jì)荷電狀態(tài)的遞增量或遞減量。動(dòng)態(tài)電壓的信息可以有效地仿真鋰電池的行為,進(jìn)而決定荷電狀態(tài)SOC(%),但此方法并不能估計(jì)電池容量值(mAh)。
它的計(jì)算方式是根據(jù)電池電壓和開(kāi)路電壓之間的動(dòng)態(tài)差異,借著使用迭代算法來(lái)計(jì)算每次增加或減少的荷電狀態(tài),以估計(jì)荷電狀態(tài)。相較于庫(kù)侖計(jì)量法電量計(jì)的解決方案,動(dòng)態(tài)電壓算法電量計(jì)不會(huì)隨時(shí)間和電流累積誤差。庫(kù)侖計(jì)量法電量計(jì)通常會(huì)因?yàn)殡娏鞲袦y(cè)誤差及電池自放電而造成荷電狀態(tài)估計(jì)不準(zhǔn)。即使電流感測(cè)誤差非常小,庫(kù)侖計(jì)數(shù)器卻會(huì)持續(xù)累積誤差,而所累積的誤差只有在完全充電或完全放電才能消除。
動(dòng)態(tài)電壓算法電量計(jì)僅由電壓信息來(lái)估計(jì)電池的荷電狀態(tài);因?yàn)樗皇怯呻姵氐碾娏餍畔?lái)估計(jì),所以不會(huì)累積誤差。若要提高荷電狀態(tài)的精確度,動(dòng)態(tài)電壓算法需要用實(shí)際的裝置,根據(jù)它在完全充電和完全放電的情況下,由實(shí)際的電池電壓曲線來(lái)調(diào)整出一優(yōu)化的算法的參數(shù)。
相較于庫(kù)侖計(jì)量法電量計(jì)通常會(huì)因?yàn)殡娏鞲袦y(cè)誤差及電池自放電而造成荷電狀態(tài)的不準(zhǔn)的情形,動(dòng)態(tài)電壓算法它不會(huì)隨時(shí)間和電流累積誤差,這是一個(gè)大優(yōu)點(diǎn)。因?yàn)闆](méi)有充/放電電流的信息,動(dòng)態(tài)電壓算法在短期精確度上較差,且反應(yīng)時(shí)間較慢。此外,它也無(wú)法估計(jì)完全充電容量。然而,它在長(zhǎng)期精確度上卻表現(xiàn)良好,因?yàn)殡姵仉妷鹤罱K會(huì)直接反應(yīng)它的荷電狀態(tài)。1972年美國(guó)科學(xué)家J.A.Mas提出蓄電池在充電過(guò)程中存在最佳充電曲線和他的馬斯三定律,需要注意的是,這個(gè)理論是針對(duì)鉛酸蓄電池提出的,其界定最大可接受充電電流的邊界條件是少量副反應(yīng)氣體的產(chǎn)生,顯然這個(gè)條件與具體的反應(yīng)類型有關(guān)。
但系統(tǒng)存在最優(yōu)解的思想,卻是放之四海而皆準(zhǔn)的。具體到鋰電池,界定其最大可接受電流的邊界條件可以重新定義?;谝恍┭芯课墨I(xiàn)的結(jié)論,其最優(yōu)值仍然是類似馬斯定律的曲線趨勢(shì)。
值得注意的是,鋰電池的最大可接受充電電流的邊界條件,除了需要考慮鋰電池單體的因素,還需要考慮系統(tǒng)級(jí)別的因素,比如散熱能力不同,系統(tǒng)的最大可接受充電電流是不同的。然后我們暫且以這樣的基礎(chǔ)繼續(xù)向下討論。
馬斯定理的公式描述:
式中;I0為電池初始充電電流;α為充電接受率;t為充電時(shí)間。I0和α的值與電池類型、結(jié)構(gòu)和新舊程度有關(guān)。
現(xiàn)階段對(duì)電池充電方法的研究主要是基于最佳充電曲線來(lái)開(kāi)展的。如下圖所示,如果充電電流超過(guò)這條最佳充電曲線,不但不能提高充電速率,而且會(huì)增加電池的析氣量;如果小于此最佳充電曲線,雖然不會(huì)對(duì)電池造成傷害,但是會(huì)延長(zhǎng)充電時(shí)間,降低充電效率。
對(duì)這個(gè)理論的闡述包含三個(gè)層次,是為馬斯三定律:
①對(duì)于任何給定的放電電流,蓄電池充電時(shí)的電流接受比α與電池放出的容量平方根成反比;
②對(duì)于任何給定的放電量,α與放電電流Id的對(duì)數(shù)成正比;
③蓄電池在以不同的放電率放電后,其最終的允許充電電流It(接受能力)是各個(gè)放電率下的允許充電電流的總和。
以上定理,也是充電接受能力這個(gè)概念的來(lái)源。先理解一下什么是充電接受能力。找了一圈,沒(méi)有看到統(tǒng)一官方的定義。按照自己的理解,充電接受能力就是在特定環(huán)境條件下,具備一定荷電量的可充電電池充電的最大電流??梢越邮艿暮x是不會(huì)產(chǎn)生不應(yīng)有的副反應(yīng),不會(huì)對(duì)電芯的壽命和性能造成不良影響。
進(jìn)而理解一下三定律。第一定律,在電池放出一定電量以后,其充電接受能力與當(dāng)前荷電量有關(guān),荷電量越低,其充電接受能力越高。第二定律,充電過(guò)程中,出現(xiàn)脈沖放電,有助于幫助電池提高實(shí)時(shí)的可接受電流值;第三定律,充電接受能力會(huì)受到充電時(shí)刻以前的充放電情況的疊加影響。
如果馬斯理論也適用于鋰電池,則反向脈沖充電(下文中具體名稱為Reflex快速充電法)除了可以用去極化的角度解釋其對(duì)溫升抑制有幫助以外,馬斯理論也作為對(duì)脈沖方法的支撐。而更進(jìn)一步的,真正將馬斯理論全盤(pán)運(yùn)用的,是智能充電方法,即跟蹤電池參數(shù),使得充電電流值始終因循鋰電池的馬斯曲線變化,使得在安全邊界以內(nèi),充電效率達(dá)到最大化。