鉅大LARGE | 點(diǎn)擊量:1327次 | 2019年01月08日
鋰離子電池負(fù)極材料的有關(guān)研究
鋰離子電池的能量密度(170Wh/kg),約為傳統(tǒng)鉛酸蓄電池的3~4倍,使其在動(dòng)力電源領(lǐng)域具有較強(qiáng)的吸引力。
負(fù)極材料的能量密度是影響鋰離子電池能量密度的主要因素之一,可見負(fù)極材料在鋰離子電池化學(xué)體系中起著至關(guān)重要的作用,其中研究較為廣泛的鋰離子電池負(fù)極材料為金屬基(Sn基材料、Si基材料)、鈦酸鋰、碳材料(碳納米管、石墨烯等)等負(fù)極材料。
研究表明,通過制備復(fù)合材料,可以有效抑制SnO2顆粒的團(tuán)聚,同時(shí)還能緩解嵌鋰時(shí)的體積效應(yīng),提高SnO2的電化學(xué)穩(wěn)定性。
Zhou等通過化學(xué)沉積和高溫?zé)Y(jié)法制備SnO2/石墨復(fù)合材料,其在100mA/g的電流密度下,比容量可達(dá)450mAh/g以上,在2400mA/g電流密度下,可逆比容量超過230mAh/g,
實(shí)驗(yàn)表明,石墨作為載體,不僅能將SnO2顆粒分散得更均勻,而且能有效抑制顆粒團(tuán)聚,提高材料的循環(huán)穩(wěn)定性。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
2011年,日本SONY公司宣布采用Sn系非晶化材料作容量為3.5AH的18650圓柱電池的負(fù)極。單質(zhì)錫的理論比容量為994mAh/g,能與其他金屬Li、Si、Co等形成金屬間化合物。
該材料的首次放電比容量為636.3mAh/g,首次庫倫效率達(dá)到83.1%,70次充放電循環(huán)后比容量仍可達(dá)到511.0mAh/g。
Wang等以石墨為分散劑,SnO/SiO和金屬鋰的混合物為反應(yīng)物,采用高能機(jī)械球磨法并經(jīng)后期熱處理,制備了石墨基質(zhì)中均勻分散的Sn/Si合金,該材料在200次充放電循環(huán)后,其可逆容量仍可達(dá)574.1mAh/g,性能優(yōu)于單獨(dú)的SnO或SiO等負(fù)極材料。
硅作為鋰離子電池理想的負(fù)極材料,具有如下優(yōu)點(diǎn):硅可與鋰形成Li4.4Si合金,理論儲(chǔ)鋰比容量高達(dá)4200mAh/g(超過石墨比容量的10倍);硅的嵌鋰電位(0.5V)略高于石墨,在充電時(shí)難以形成“鋰枝晶”;硅與電解液反應(yīng)活性低,不會(huì)發(fā)生有機(jī)溶劑的共嵌入現(xiàn)象。
然而,硅電極在充放電過程中會(huì)發(fā)生循環(huán)性能下降和容量衰減,主要有兩大原因:硅與鋰生成Li4.4Si合金時(shí),體積膨脹高達(dá)320%,巨大的體積變化易導(dǎo)致活性物質(zhì)從集流體中脫落,從而降低與集流體間的電接觸,造成電極循環(huán)性能迅速下降;電解液中的LiPF6分解產(chǎn)生的微量HF會(huì)腐蝕硅,造成了硅電極容量衰減。
標(biāo)稱電壓:28.8V
標(biāo)稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應(yīng)用領(lǐng)域:勘探測(cè)繪、無人設(shè)備
Liu等通過高能球磨法制備了Si-NiSi-Ni復(fù)合物,然后利用HNO3溶解復(fù)合物中的Ni單質(zhì),得到了多孔結(jié)構(gòu)的Si-NiSi復(fù)合物。
通過XRD表征可知,體系中存在NiSi合金,其不僅為負(fù)極材料提供了可逆容量,還與粒子內(nèi)部的孔隙協(xié)同,緩沖硅在充放電循環(huán)過程中的體積膨脹,提高硅電極的循環(huán)性能。
Lee等采用酚醛樹脂為碳源,在氬氣氣氛下于700℃高溫裂解,制備了核殼型Si/C復(fù)合材料,經(jīng)過10次循環(huán)后復(fù)合物的可逆容量仍可達(dá)1029mAh/g,表明采用Na2CO3在硅表面與酚醛樹脂間形成共價(jià)鍵,然后進(jìn)行高溫裂解,可改善硅與裂解碳間的接觸,從而提高負(fù)極材料的循環(huán)性、減小不可逆容量損失。
鈦酸鋰的諸多優(yōu)點(diǎn)決定了其具有優(yōu)異的循環(huán)性能和較高的安全性,然而,其導(dǎo)電性不高、大電流充放電時(shí)容量衰減嚴(yán)重,通常采用表面改性或摻雜來提高其電導(dǎo)率。
碳納米管是一種石墨化結(jié)構(gòu)的碳材料,自身具有優(yōu)良的導(dǎo)電性能,同時(shí)由于其脫嵌鋰時(shí)深度小、行程短,作為負(fù)極材料在大倍率充放電時(shí)極化作用較小,可提高電池的大倍率充放電性能。
碳納米管在負(fù)極中的另一個(gè)應(yīng)用是與其他負(fù)極材料(石墨類、鈦酸鋰、錫基、硅基等)復(fù)合,利用其獨(dú)特的中空結(jié)構(gòu)、高導(dǎo)電性及大比表面積等優(yōu)點(diǎn)作為載體改善其他負(fù)極材料的電性能。
碳納米管的中空結(jié)構(gòu)及膨脹石墨的孔洞,提供了大量的鋰活性位,而且這種結(jié)構(gòu)能緩沖材料在充放電過程中產(chǎn)生的體積效應(yīng)。
石墨烯是一種由碳六元環(huán)形成的新型碳材料,具有很多優(yōu)異的性能,如大比表面(約2600m2g-1)、高導(dǎo)熱系數(shù)(約5300Wm-1K-1)、高電子導(dǎo)電性(電子遷移率為15000cm2V-1s-1)和良好的機(jī)械性能,被作為鋰離子電池材料而備受關(guān)注。
石墨烯直接作為鋰離子電池負(fù)極材料時(shí),具有非??捎^的電化學(xué)性能。
Wang等采用水合肼作為還原劑、制備了叢林形貌的石墨烯片,其兼具硬碳和軟碳特性,且在高于0.5V電壓區(qū)間,表現(xiàn)出電容器的特性。
石墨烯還可作為導(dǎo)電劑,與其他負(fù)極材料復(fù)合,提高負(fù)極材料的電化學(xué)性能。
近年來,鋰離子電池負(fù)極材料朝著高比容量、長循環(huán)壽命和低成本方向進(jìn)展。