鉅大LARGE | 點(diǎn)擊量:1394次 | 2021年04月26日
什么是熱失控?鋰離子電池?zé)崾Э責(zé)崃俊皝碓础狈治?/h1>
鋰離子電池的安全問題是關(guān)乎到使用者生命財(cái)產(chǎn)安全的重要問題,因此無論我們追求多么高的性能指標(biāo),安全永遠(yuǎn)是我們無法回避,也不應(yīng)回避的問題。熱失控是鋰離子電池最為嚴(yán)重的安全事故,熱失控會(huì)導(dǎo)致鋰離子電池起火、爆炸,嚴(yán)重威脅使用者的生命和財(cái)產(chǎn)安全,因此鋰離子電池在設(shè)計(jì)的時(shí)候就要充分考慮安全問題。
熱失控重要是由于內(nèi)短路、外短路導(dǎo)致短時(shí)間內(nèi)在鋰離子電池內(nèi)部出現(xiàn)大量的熱量,引發(fā)了正負(fù)極活性物質(zhì)和電解液的分解,導(dǎo)致鋰離子電池起火和爆炸。不同種類的電池材料熱穩(wěn)定性不同,在熱失控中產(chǎn)熱也不相同,下圖為鋰離子電池內(nèi)部常見材料的DSC測(cè)試結(jié)果,首先我們以左下角的Li4Ti5O12材料為例介紹這張圖的看圖方法,首先我們看到圖中LTO的Q表示LTO材料的放熱速率,H表示LTO總的放熱量,從左到右的三個(gè)溫度分別為Tonset觸發(fā)溫度,Tpeak峰值溫度,Tend最終溫度,也就是說下圖中越靠近右下角的材料熱穩(wěn)定性越好,產(chǎn)熱越少,自身彩色塊高度越低則產(chǎn)熱功率越小,這張圖片讓我們更加生動(dòng)的看到常見的鋰離子電池材料的熱穩(wěn)定性,從而為我們?cè)阡囯x子電池設(shè)計(jì)中供應(yīng)一些參考。
雖然針對(duì)鋰離子電池材料的熱穩(wěn)定的研究很多,但是針對(duì)全電池?zé)岱€(wěn)定性的研究卻并不多,近日清華大學(xué)的何向明課題組利用加速量熱法ARC和差示掃描量熱法DSC對(duì)采用不同材料的鋰離子電池在熱失控中的熱量來源進(jìn)行了研究。實(shí)驗(yàn)中共對(duì)4種類型的鋰離子電池進(jìn)行了研究,4種電池的信息如下表所示。
四種電池在加速量熱法ARC測(cè)試中溫度、電壓和內(nèi)阻的變化如下圖所示(所有的電池在測(cè)試之前均充電到100%SoC)。首先,我們來看一下第1種電池,從下圖a中我們可以看到該電池在100℃時(shí)電池開始自發(fā)熱,在247℃時(shí)電池發(fā)生熱失控,溫度突然升高到866.3℃。和向明團(tuán)隊(duì)將整個(gè)熱失控過程分為四個(gè)部分:
i.第1階段從100℃開始,并在134.8℃結(jié)束,在此過程中SEI膜的分解和正極材料的自放電是重要的熱量來源。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
ii.第2階段是從134.8℃開始,173.4℃結(jié)束。在此過程中隔膜開始破壞,電池電壓開始下降,電池的溫度升高速率明顯加速,并在173.4℃時(shí)最終發(fā)生內(nèi)短路,電壓下降到0V,該過程中內(nèi)短路是重要的熱量來源。
iii.第3階段從173.4℃開始,247℃結(jié)束,最終引發(fā)熱失控。此過程正負(fù)極材料的分解是重要的熱量來源。
iv.第4階段從247℃開始,在886.3℃結(jié)束,電池的熱失控重要發(fā)生在這一階段。在此階段,正負(fù)極材料與電解液之間的反應(yīng)也被觸發(fā),導(dǎo)致電池出現(xiàn)更多的熱量。
關(guān)于第2種電池,電池從100℃開始自發(fā)熱,在208.8℃時(shí)發(fā)生熱失控,并最終達(dá)到367.8℃。該電池的熱失控同樣被分為四個(gè)階段,如下所示。
i.第1階段,從100℃開始,155.7℃結(jié)束,此過程中SEI膜的分解和正極的自放電是重要的熱量來源。
標(biāo)稱電壓:28.8V
標(biāo)稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應(yīng)用領(lǐng)域:勘探測(cè)繪、無人設(shè)備
ii.第2階段從155.7℃開始,在170.3℃結(jié)束,這一階段的熱量來源重要是負(fù)極與電解液的反應(yīng)。
iii.第3階段從170.3℃開始,在212℃結(jié)束,此階段中,隔膜開始收縮,電壓開始下降。這一階段的重要熱量來源為內(nèi)短路和負(fù)極的放熱反應(yīng)。
iv.第4階段從212.4℃開始,在367.9℃結(jié)束。此階段中隔膜被破壞,導(dǎo)致嚴(yán)重的內(nèi)短路,電池溫度快速攀升,同時(shí)根據(jù)正負(fù)極的DSC測(cè)試數(shù)據(jù),可以判斷LFP正極和MCMB負(fù)極在此階段也放出了大量的熱量。
第3種電池在85℃開始自發(fā)熱,并在190.6℃發(fā)生了熱失控,最高溫度達(dá)到了634.6℃。第3種電池的反應(yīng)被分為了兩個(gè)階段,如下所示。
i.第1階段從85℃開始,在190.6℃結(jié)束。第3種電池的負(fù)極從85攝℃開始發(fā)生放熱反應(yīng),這要比第1和第2種電池要低的多,同時(shí)由于隔膜表面沒有涂層,隔膜開始融化后很快就導(dǎo)致了嚴(yán)重的內(nèi)短路的發(fā)生。
ii.第2階段從190.6℃開始,最終電池達(dá)到634.6℃,在這一階段中電池?zé)崃恐匾獊碜哉龢O、負(fù)極與電解液之間的反應(yīng)。
第4種電池在116.5℃開始自發(fā)熱,電池在熱失控中的最高溫度達(dá)到215.5℃,整個(gè)過程也可以被分為兩個(gè)過程。
i.第1階段從116.5℃開始,192.8℃結(jié)束,在此過程中熱量重要來自正負(fù)極材料與電解液之間的反應(yīng)。
ii.第2階段從192.8℃開始,在215.5℃結(jié)束,在此過程中電池的溫升速率明顯持續(xù)下降,說明此時(shí)正負(fù)極的分解在此階段逐漸停止。
由于DSC的測(cè)試表明涂層隔膜的破壞溫度達(dá)到290℃,因此第4種電池在ARC測(cè)試中不會(huì)發(fā)生內(nèi)短路,因此第4種電池在測(cè)試中熱量重要來自正負(fù)極材料與電解液之間的反應(yīng)。
四種電池在測(cè)試中的一些數(shù)據(jù)如下表所示。
從上面的測(cè)試結(jié)果,我們看到鋰離子電池的熱穩(wěn)定性與正負(fù)極材料、隔膜都有著密切的關(guān)系,關(guān)于第1和第3種電池由于嚴(yán)重的內(nèi)短路引起正負(fù)極材料的劇烈反應(yīng)導(dǎo)致熱失控,電池在整個(gè)過程放出大量的熱量,甚至要比儲(chǔ)存在鋰離子電池內(nèi)部的電能還要多。而第2種電池的熱失控則要溫和的多,第4種電池在熱失控根本就沒有發(fā)生內(nèi)短路,因此第2和第4種電池在測(cè)試中放出的熱量要明顯的少于儲(chǔ)存在電池中的電能。因此,如何防止嚴(yán)重的內(nèi)短路發(fā)生是提高鋰離子電池?zé)岱€(wěn)定性的關(guān)鍵。