鉅大LARGE | 點(diǎn)擊量:1320次 | 2020年08月20日
全固態(tài)薄膜鋰離子電池的應(yīng)用發(fā)展
化學(xué)電源發(fā)展一直朝著高比能量、長壽命、高安全的方向,全固態(tài)薄膜鋰離子電池成為當(dāng)前比較的熱門的鋰離子電池種類,無機(jī)全固態(tài)薄膜鋰離子電池采用薄膜正負(fù)極和薄膜固態(tài)電解質(zhì),無機(jī)固態(tài)電解質(zhì)的薄膜形態(tài)使離子電導(dǎo)率較低的固態(tài)電解質(zhì)代替液體電解質(zhì)成為可能,而正負(fù)極的薄膜形態(tài)使其可以應(yīng)用很多充放電體積變化較大的正負(fù)極材料,如金屬鋰、薄膜硅等。同時(shí),由于薄膜鋰離子電池的薄膜形態(tài),使其很容易加工成微米級(jí)電池,甚至進(jìn)一步的研究出納米電池,所以,薄膜鋰離子電池不但成為下一代化學(xué)電源的研究熱點(diǎn),同時(shí)也是微電池研究必然的發(fā)展方向。
目前對(duì)無機(jī)全固態(tài)薄膜鋰離子電池的研究方向重要分為:(1)研發(fā)新的電池結(jié)構(gòu),提高電池單位面積的容量、放電功率,解決薄膜鋰離子電池單位面積容量和功率低的問題:(2)研究新型高離子電導(dǎo)率的固態(tài)電解質(zhì),解決無機(jī)固態(tài)電解質(zhì)鋰離子電導(dǎo)率低的問題:(3)研究新型正、負(fù)極,使成膜后的正、負(fù)極具有更
1、薄膜鋰離子電池結(jié)構(gòu)的研究
薄膜鋰離子電池采用經(jīng)典的疊層結(jié)構(gòu),這種電池結(jié)構(gòu)簡單,加工容易。但為了進(jìn)一步提高電池的性能,對(duì)薄膜鋰離子電池結(jié)構(gòu)的研究逐漸新增,特別是3D結(jié)構(gòu)的薄膜鋰離子電池由于其良好的性能預(yù)期而成為研究熱點(diǎn)。在薄膜鋰離子電池的3D結(jié)構(gòu)的類似多孔結(jié)構(gòu)的3D電池,這種電池是在硅基體上加工很多規(guī)則排列的微孔,在微孔內(nèi)沉積Li擴(kuò)散阻隔層TiN,然后以硅為負(fù)極,LiPON為電解質(zhì),LiCoO2為正極制成電池。
2、無機(jī)固態(tài)電解質(zhì)的研究
應(yīng)用無機(jī)固態(tài)電解質(zhì)的電池相關(guān)于電解液電池有諸多優(yōu)勢(shì),如電化學(xué)穩(wěn)定、熱穩(wěn)定、抗震、耐沖擊、不存在漏液和污染問題,易于小型化及制成薄膜。優(yōu)良的無機(jī)固態(tài)電解質(zhì)應(yīng)當(dāng)具有以下特點(diǎn):(1)在鋰活性狀態(tài)和環(huán)境溫度范圍內(nèi)具有高鋰離子電導(dǎo)率和幾乎可以忽略的電子電導(dǎo)率;(2)必須在電化學(xué)反應(yīng)下保持穩(wěn)定,尤其與鋰或鋰合金負(fù)極接觸的界面;(3)為了將其應(yīng)用,固態(tài)電解質(zhì)必須環(huán)境友好、無毒、價(jià)格低廉容易制備,最好熱膨脹系數(shù)能與兩側(cè)的電極相吻合,至少不能相差過大。
(1)晶體型無機(jī)電解質(zhì)
目前,晶體無機(jī)電解質(zhì)在諸多報(bào)道中表現(xiàn)出了高離子電導(dǎo)率,其可以分為NASICON型、LISICON型、Thio-LISICON型、鈣鈦礦型等結(jié)構(gòu)的固態(tài)電解質(zhì)。NASICON型固態(tài)電解質(zhì)的結(jié)構(gòu)一般為M[A2B3O12],盡管NASICON型電解質(zhì)具有較高的離子傳導(dǎo)率,但是由于T產(chǎn)易被金屬鋰還原,導(dǎo)致其與金屬鋰接觸不穩(wěn)定。
LISICON也具有較高的離子電導(dǎo)率,其典型結(jié)構(gòu)是Lisa.Zn1.GeO1sThio-LISl-CON型電解質(zhì)則是為了提高電解質(zhì)的離子傳導(dǎo)率在LISICON型電解質(zhì)中用硫替代氧,如Li2GeS3、Li4GeS4、Li2ZnGeS4等新材料,其離子電導(dǎo)率最高可達(dá)6.5×10-5S/cm。
晶體型固態(tài)電解質(zhì)雖然具有較高的離子電導(dǎo)率,但一般是單晶數(shù)據(jù),制成陶瓷電解質(zhì)片應(yīng)用時(shí),由于晶界的離子擴(kuò)散阻力,其離子電導(dǎo)率大幅降低,而且晶體型固態(tài)電解質(zhì)由于含有易被金屬鋰還原的離子如T”、Si”、Ge*等,使其在與金屬鋰、鋰合金等還原性強(qiáng)的負(fù)極接觸時(shí)界面發(fā)生還原反應(yīng),電解質(zhì)不穩(wěn)定。
(2)LPON等非晶體固態(tài)電解質(zhì)
LiPON是一種部分氮化的磷酸鋰,是一種綜合性能優(yōu)秀的固態(tài)電解質(zhì),LiPON膜的室溫離子電導(dǎo)率與其N含量有關(guān),其合成最佳比例的LiPON電解質(zhì)膜為LibPOxNaus,25℃時(shí)其離子電導(dǎo)率可達(dá)3.3×10-5S/cm,電化學(xué)穩(wěn)定窗口寬,可達(dá)5.5V,活化能0.54eV。LiPON是通過在N2氣氛下濺射得到的薄膜,且其化學(xué)性質(zhì)和電化學(xué)性質(zhì)穩(wěn)定,而且可以同LiCo02、LiMnO4等正極,金屬鋰、鋰合金等負(fù)極相匹配,使其成為關(guān)于薄膜鋰離子電池發(fā)展十分重要的一種電解質(zhì)。
3、正、負(fù)極薄膜的研究
(1)正極薄膜的研究
薄膜鋰離子電池的正極材料初期重要是Ti2S3、MoS2、MnO?等,隨后被電位更高的正極材料代替,如V2O3、LiCoO2、LiNiO2、LiMn2O4。薄膜制備技術(shù)也從初期的蒸鍍、旋涂、濺射等技術(shù)不斷完善新增。
釩氧化物和釩酸鋰類正極材料一直是正極材料研究的重要方向,其作為薄膜鋰離子電池的正極材料具有不要退火的加工優(yōu)勢(shì),可以加工在一些不耐高溫的襯底上。
LiCo04是商業(yè)化薄膜鋰離子電池采用的正極材料(ITN),美國很多電池體系均采用其作為正極薄膜的材料,其有比能量高、循環(huán)性能好等優(yōu)點(diǎn),研究十分活躍。采用磁控濺射或脈沖激光沉積的LiCoO4薄膜為無定形結(jié)構(gòu),容量低、循環(huán)性能差,要經(jīng)過700℃以上的退火,才能得到容量高、循環(huán)性能好的晶體結(jié)構(gòu)的LiCoO2薄膜,這就限制了Li-Co02電極對(duì)襯底材質(zhì)的選擇。
納米晶體的LiCoO4放電性能雖然不如700℃退火的LiCoO2薄膜,但比未退火的薄膜性能有明顯改善,針對(duì)聚合物等不耐高溫的襯底有一定的應(yīng)用價(jià)值。Park等在射頻磁控濺射中加入偏壓,制備出了不要退火也具有一定容量、循環(huán)能力。
(2)負(fù)極薄膜的研究
全固態(tài)薄膜鋰離子電池的負(fù)極薄膜目前多采用金屬鋰薄膜。
金屬鋰具有電位低、比容量高等優(yōu)點(diǎn),而其安全性差、充放電形變大的缺點(diǎn)由于薄膜電極很薄而近于忽略,但考慮到全固態(tài)薄膜鋰離子電池未來在微電子方面的用途,采用鋰薄膜作為負(fù)極不能耐受回流焊的加熱溫度(鋰熔點(diǎn)l80.5℃,回流焊溫度245℃),因此,薄膜鋰離子電池的研究工作者們關(guān)于新型負(fù)極也進(jìn)行了很多研究。
錫基材料具有較高的熔點(diǎn),能夠承受回流焊的溫度,且制備環(huán)境要求低,是目前研究較多的薄膜負(fù)極之一。SnO3薄膜負(fù)極,其具有較高的首次放電容量,但第二循環(huán)就衰減到29%,該負(fù)極初始比容量達(dá)100uAh/cm2,但衰減很快,100次循環(huán)后只能保持3uAh/cm2。這可能是由于制成薄膜電極后,電極不能對(duì)錫氧化物的收縮和團(tuán)聚進(jìn)行有效抑制造成的。
硅具有高達(dá)4200mAh/g(LioSi)的理論比容量,因此,硅基負(fù)極薄膜的研究一直是薄膜負(fù)極研究的熱點(diǎn)之一。采用電子束蒸發(fā)的方式,以Co和Si靶制備出了CoSie和CoSib2兩種硅合金薄膜,均顯示出了良好的電化學(xué)性能,但合金中的Si導(dǎo)致循環(huán)后容量有一定的衰減。采用脈沖激光沉積的方法制備了MgsSi薄膜負(fù)極,在0.1~1V(vs.Li)范圍內(nèi)該薄膜電極比容量達(dá)到2000mAh/g,并且超過l00次循環(huán)后無明顯衰減,同時(shí),他們還發(fā)現(xiàn)硅合金負(fù)極的厚度影響了其循環(huán)性能,Mg.Si薄膜負(fù)極厚度30nm時(shí),其循環(huán)性能最好。
上一篇:為何鋰聚合物電池如此受歡迎?