鉅大LARGE | 點(diǎn)擊量:1173次 | 2020年05月19日
技術(shù)解析:有效地降低開(kāi)關(guān)電源開(kāi)關(guān)損耗的原理
基于電感的開(kāi)關(guān)電源(SM-pS)包含一個(gè)功率開(kāi)關(guān),用于控制輸入電源流經(jīng)電感的電流。大多數(shù)開(kāi)關(guān)電源設(shè)計(jì)選擇MOSFET作開(kāi)關(guān)(圖1a中Q1),其重要優(yōu)點(diǎn)是MOSFET在導(dǎo)通狀態(tài)具有相對(duì)較低的功耗。
隨著蜂窩電話(huà)、pDA及其他電子設(shè)備的體積要求越來(lái)越小,對(duì)電子器件,包括電感、電容、MOSFET等的尺寸要求也更加苛刻。減小SMpS體積的通用方法是提高它的開(kāi)關(guān)頻率,開(kāi)關(guān)頻率高容許使用更小的電感、電容,使外部元件尺寸最小。
不幸的是,提高SMpS的開(kāi)關(guān)頻率會(huì)降低轉(zhuǎn)換效率,即使MOSFET的導(dǎo)通電阻非常小。工作在高開(kāi)關(guān)頻率時(shí),MOSFET的動(dòng)態(tài)特性,如柵極充放電和開(kāi)關(guān)時(shí)間變得更重要??梢钥吹皆谳^高的開(kāi)關(guān)頻率時(shí),高導(dǎo)通電阻的MOSFET反而可以提高SMpS的效率。為了理解這個(gè)現(xiàn)象就不能只看MOSFET的導(dǎo)通電阻。下面討論了N溝道增強(qiáng)型MOSFET的情況,其它類(lèi)型的MOSFET具有相同結(jié)果。
當(dāng)溝道完全打開(kāi),溝道電阻(RDS(ON))降到最低;假如降低柵極電壓,溝道電阻則升高,直到幾乎沒(méi)有電流通過(guò)漏極、源極,這時(shí)MOSFET處于斷開(kāi)狀態(tài)。可以預(yù)見(jiàn),溝道的體積愈大,導(dǎo)通電阻愈小。同時(shí),較大的溝道也要較大的控制柵極。由于柵極類(lèi)似于電容,較大的柵極其電容也較大,這就要更多的電荷來(lái)開(kāi)關(guān)MOSFET。同時(shí),較大的溝道也要更多的時(shí)間使MOSFET打開(kāi)或關(guān)閉。工作在高開(kāi)關(guān)頻率時(shí),這些特性對(duì)轉(zhuǎn)換效率的下降有重要影響。在低開(kāi)關(guān)頻率或低功率下,對(duì)SMpSMOSFET的功率損耗起決定用途的是RDS(ON),其它非理想?yún)?shù)的影響通常很小,可忽略不計(jì)。而在高開(kāi)關(guān)頻率下,這些動(dòng)態(tài)特性將受到更多關(guān)注,因?yàn)檫@種情況下它們是影響開(kāi)關(guān)損耗的重要原因。
圖2.所示簡(jiǎn)單模型顯示了N溝道增強(qiáng)型MOSFET的基本組成,流經(jīng)漏極與源極之間溝道的電流受柵極電壓控制
MOSFET的導(dǎo)通和關(guān)斷要一定的過(guò)渡時(shí)間,以對(duì)溝道充電,出現(xiàn)電流或?qū)系婪烹姡P(guān)斷電流。MOSFET參數(shù)表中,這些參數(shù)稱(chēng)為導(dǎo)通上升時(shí)間和關(guān)斷下降時(shí)間。對(duì)指定系列中,低導(dǎo)通電阻MOSFET對(duì)應(yīng)的開(kāi)啟、關(guān)斷時(shí)間相對(duì)要長(zhǎng)。當(dāng)MOSFET開(kāi)啟、關(guān)閉時(shí),溝道同時(shí)加有漏極到源極的電壓和導(dǎo)通電流,其乘積等于功率損耗。三個(gè)基本功率是:
p=I*E
p=I2*R
p=E2/R
對(duì)上述公式積分得到功耗,可以對(duì)不同的開(kāi)關(guān)頻率下的功率損耗進(jìn)行評(píng)估。
MOSFET的開(kāi)啟和關(guān)閉的時(shí)間是常數(shù),當(dāng)占空比不變而開(kāi)關(guān)頻率升高時(shí)(圖5),狀態(tài)轉(zhuǎn)換的時(shí)間相應(yīng)新增,導(dǎo)致總功耗新增。例如,考慮一個(gè)SMpS工作在50%占空比500kHz,假如開(kāi)啟時(shí)間和關(guān)閉時(shí)間各為0.1祍,那么導(dǎo)通時(shí)間和斷開(kāi)時(shí)間各為0.4祍。假如開(kāi)關(guān)頻率提高到1MHz,開(kāi)啟時(shí)間和關(guān)閉時(shí)間仍為0.1祍,導(dǎo)通時(shí)間和斷開(kāi)時(shí)間則為0.15祍。這樣,用于狀態(tài)轉(zhuǎn)換的時(shí)間比實(shí)際導(dǎo)通、斷開(kāi)的時(shí)間還要長(zhǎng)。
可以用一階近似更好地估計(jì)MOSFET的功耗,MOSFET柵極的充放電功耗的一階近似公式是:
EGATE=QGATE×VGS,
QGATE是柵極電荷,VGS是柵源電壓。
在升壓變換器中,從開(kāi)啟到關(guān)閉、從關(guān)閉到開(kāi)啟過(guò)程中出現(xiàn)的功耗可以近似為:
ET=(abs[VOUT-VIN]×ISW×t)/2
其中ISW是通過(guò)MOSFET的平均電流(典型值為0.5IpK),t是MOSFET參數(shù)表給出的開(kāi)啟、關(guān)閉時(shí)間。
MOSFET完全導(dǎo)通時(shí)的功耗(傳導(dǎo)損耗)可近似為:
ECON=(ISW)2×RON×tON,
其中RON是參數(shù)表中給出的導(dǎo)通電阻,tON是完全導(dǎo)通時(shí)間(tON=1/2f,假設(shè)最壞情況50%占空比)??紤]一個(gè)典型的A廠商的MOSFET:
RDSON=69mW
QGATE=3.25nC
tRising=9ns
tFalling=12ns
一個(gè)升壓變換器參數(shù)如下:
VIN=5V
VOUT=12V
ISW=0.5A
VGS=4.5V
100kHz開(kāi)關(guān)頻率下每周期的功率損耗如下:
EGATE=3.25nC×4.5V=14.6nJ
ET(rising)=((12V-5V)×0.5A×9ns)/2=17.75nJ
ET(falling)=((12V-5V)×0.5A×12ns)/2=21nJ
ECON=(0.5)2×69mW×1/(2×100kHz)=86.25nJ.
從結(jié)果可以看到,100kHz時(shí)導(dǎo)通電阻的損耗占重要部分,但在1MHz時(shí)結(jié)果完全不同。柵極和開(kāi)啟關(guān)閉的轉(zhuǎn)換損耗保持不變,每周期的傳導(dǎo)損耗以十分之一的倍率下降到8.625nJ,從每周期的重要功耗轉(zhuǎn)為最小項(xiàng)。每周期損耗在62nJ,頻率升高10倍,總MOSFET功率損耗新增了4.4倍。
另外一款MOSFET:
RDSON=300mW
QGATE=0.76nC
TRising=7ns
TFalling=2.5ns.
SMpS的工作參數(shù)如下:
EGATE=0.76nC×4.5V=3.4nJ
ET(rising)=((12V-5V)×0.5A×7ns)/2=12.25nJ
ET(falling)=((12V-5V)×0.5A×2.5ns)/2=4.3nJ
ECON=(0.5)2×300mW×1/(2×1MHz)=37.5nJ.
導(dǎo)通電阻的損耗仍然占重要地位,但是每周的總功耗僅57.45nJ。這就是說(shuō),高RDSON(超過(guò)4倍)的MOSFET使總功耗減少了7%以上。如上所述,可以通過(guò)選擇導(dǎo)通電阻及其它MOSFET參數(shù)來(lái)提高SMpS的效率。
到目前為止,對(duì)低導(dǎo)通電阻MOSFET的需求并沒(méi)有改變。大功率的SMpS傾向于使用低開(kāi)關(guān)頻率,所以MOSFET的低導(dǎo)通電阻對(duì)提高效率非常關(guān)鍵。但對(duì)便攜設(shè)備,要使用小體積的SMpS,此時(shí)的SMpS工作在較高的開(kāi)關(guān)頻率,可以用更小的電感和電容。延長(zhǎng)電池壽命必須提高SMpS效率,在高開(kāi)關(guān)頻率下,低導(dǎo)通電阻MOSFET未必是最佳選擇,要在導(dǎo)通電阻、柵極電荷、柵極上升/下降時(shí)間等參數(shù)上進(jìn)行折中考慮。