鉅大LARGE | 點(diǎn)擊量:1447次 | 2020年05月19日
小貼士:開關(guān)電源中功率MOSFET管損壞模式及分析
本文將通過(guò)功率MOSFET管的工作特性,結(jié)合失效分析圖片中不同的損壞形態(tài),系統(tǒng)地分析過(guò)電流損壞和過(guò)電壓損壞。同時(shí)根據(jù)損壞位置不同,分析功率MOSFET管的失效發(fā)生在開通的過(guò)程中或發(fā)生在關(guān)斷的過(guò)程中,從而為設(shè)計(jì)工程師供應(yīng)一些依據(jù),找到系統(tǒng)設(shè)計(jì)中的問(wèn)題,提高電子系統(tǒng)的可靠性。
目前,功率MOSFET管廣泛地應(yīng)用于開關(guān)電源系統(tǒng)及其他功率電子電路中。實(shí)際應(yīng)用中,特別是在一些極端的邊界條件下,如系統(tǒng)的輸出短路及過(guò)載測(cè)試、輸入過(guò)電壓測(cè)試以及動(dòng)態(tài)的老化測(cè)試中,功率MOSFET管有時(shí)候會(huì)發(fā)生失效損壞。工程師將損壞的功率MOSFET管送到半導(dǎo)體原廠做失效分析后,分析報(bào)告的結(jié)論通常是過(guò)電性應(yīng)力EOS,卻無(wú)法判斷是什么原因?qū)е翸OSFET的損壞。
1過(guò)電壓和過(guò)電流測(cè)試電路
過(guò)電壓測(cè)試的電路圖如圖1(a)所示,選用40V的功率MOSFET:AON6240,DFN5?鄢6封裝。通過(guò)開關(guān)來(lái)控制,將60V的電壓直接加到AON6240的D極和S極,熔絲用來(lái)保護(hù)測(cè)試系統(tǒng),功率MOSFET損壞后,將電源斷開。測(cè)試樣品數(shù)量為5片。
過(guò)電流測(cè)試的電路圖如圖1(b)所示,選用40V的功率MOSFET:AON6240,DFN5?鄢6封裝。首先合上開關(guān)A,用20V的電源給大電容充電,電容C的容值為15mF,然后斷開開關(guān)A,合上開關(guān)B,將電容C的電壓加到功率MOSFET管的D極和S極,使用信號(hào)發(fā)生器出現(xiàn)一個(gè)電壓幅值為4V、持續(xù)時(shí)間為1s的單脈沖,加到功率MOSFET管的G極。測(cè)試樣品數(shù)量為5片。
2過(guò)電壓和過(guò)電流失效損壞
將過(guò)電壓和過(guò)電流測(cè)試損壞的功率MOSFET管去除外面的塑料外殼,露出硅片正面失效損壞的形態(tài)的圖片,分別如圖2(a)和圖2(b)所示。
從圖2(a)可以看到,過(guò)電壓的失效形態(tài)是在硅片中間的某一個(gè)位置出現(xiàn)一個(gè)擊穿小孔洞,通常稱為熱點(diǎn),其出現(xiàn)的原因就是因?yàn)檫^(guò)壓而出現(xiàn)雪崩擊穿,在過(guò)壓時(shí),通常導(dǎo)致功率MOSFET管內(nèi)部的寄生三極管導(dǎo)通[1]。由于三極管具有負(fù)溫度系數(shù)特性,當(dāng)局部流過(guò)三極管的電流越大時(shí),溫度越高。而溫度越高,流過(guò)此局部區(qū)域的電流就越大,從而導(dǎo)致功率MOSFET管內(nèi)部形成局部的熱點(diǎn)而損壞。硅片中間區(qū)域是散熱條件最差的位置,也是最容易出現(xiàn)熱點(diǎn)的地方,可以看到,圖中擊穿小孔洞(即熱點(diǎn))正好都位于硅片的中間區(qū)域。從圖2(b)可以看到,在過(guò)流損壞的條件下,所有的損壞位置都發(fā)生在S極,而且比較靠近G極。這是因?yàn)殡娙莘烹娦纬纱蟮碾娏髁鬟^(guò)功率MOSFET管,所有的電流匯集于S極,此時(shí)溫度最高,最容易出現(xiàn)損壞。
功率MOSFET管內(nèi)部由許多單元并聯(lián)形成,如圖3(a)所示。其等效的電路圖如圖3(b)所示。在開通過(guò)程中,離G極越近的區(qū)域,VGS的電壓越高,流過(guò)該區(qū)域的單元電流越大,在瞬態(tài)開通過(guò)程承擔(dān)的電流就越大。因此,離G極近的S極區(qū)域溫度更高,更容易因過(guò)流出現(xiàn)損壞。
3過(guò)電壓和過(guò)電流混合失效損壞
在實(shí)際應(yīng)用中,單一的過(guò)電流和過(guò)電流的損壞通常很少發(fā)生,更多的損壞發(fā)生在過(guò)流后,由于系統(tǒng)的過(guò)流保護(hù)電路工作,關(guān)斷功率MOSFET,而在關(guān)斷的過(guò)程中常發(fā)生過(guò)壓(即雪崩)。圖2(c)即為功率MOSFET管先發(fā)生過(guò)流,然后進(jìn)入雪崩發(fā)生過(guò)壓的損壞形態(tài)。與過(guò)流損壞形式類似,過(guò)壓多發(fā)生在靠近S極的地方。但是也存在因?yàn)檫^(guò)壓出現(xiàn)的擊穿洞坑遠(yuǎn)離S極的情況。這是因?yàn)樵陉P(guān)斷的過(guò)程,距離G極越遠(yuǎn)的位置,在瞬態(tài)關(guān)斷過(guò)程中,VGS的電壓越高,承擔(dān)電流也越大,因此更容易發(fā)生損壞。
4線性區(qū)大電流失效損壞
在電池充放電保護(hù)電路板上,一旦負(fù)載發(fā)生短線或過(guò)流電,保護(hù)電路將關(guān)斷功率MOSFET管,以免電池出現(xiàn)過(guò)放電。與短路或過(guò)流保護(hù)快速關(guān)斷方式不同,功率MOSFET管是以非常慢的速度關(guān)斷,如圖4所示。功率MOSFET管的G極通過(guò)一個(gè)1MΩ的電阻,緩慢關(guān)斷。從VGS波形上看到,米勒平臺(tái)的時(shí)間高達(dá)5ms。米勒平臺(tái)期間,功率MOSFET管工作在放大狀態(tài),即線性區(qū)。
功率MOSFET管開始工作的電流為10A,使用器件為AO4488,失效的形態(tài)如圖4(c)所示。當(dāng)功率MOSFET管工作在線性區(qū)時(shí),它是負(fù)溫度系數(shù)[2],局部單元區(qū)域發(fā)生過(guò)流時(shí),同樣會(huì)出現(xiàn)局部熱點(diǎn)。溫度越高,電流越大,致使溫度進(jìn)一步新增,導(dǎo)致過(guò)熱損壞??梢钥闯觯鋼p壞的熱點(diǎn)的面積較大,這是因?yàn)樵搮^(qū)域經(jīng)過(guò)了一按時(shí)間的熱量的積累。另外,破位的位置離G極較遠(yuǎn)。損壞同樣發(fā)生于關(guān)斷過(guò)程,破位的位置在中間區(qū)域,同樣也是散熱條件最差的區(qū)域。
另外,在功率MOSFET管內(nèi)部,局部性能弱的單元,其封裝形式和工藝都會(huì)對(duì)破位的位置出現(xiàn)影響。
不僅如此,一些電子系統(tǒng)在起動(dòng)的過(guò)程中,芯片的VCC電源(也是功率MOSFET管的驅(qū)動(dòng)電源)建立比較慢。如在照明中,使用pFC的電感繞組給pWM控制芯片供電,在起動(dòng)的過(guò)程中,功率MOSFET管由于驅(qū)動(dòng)電壓不足,容易進(jìn)入線性區(qū)工作。在進(jìn)行動(dòng)態(tài)老化測(cè)試時(shí),功率MOSFET管不斷地進(jìn)入線性區(qū),工作一段時(shí)間后,就會(huì)形成局部熱點(diǎn)而損壞。
使用AOT5N50作測(cè)試,G極加5V的驅(qū)動(dòng)電壓,做開關(guān)機(jī)的重復(fù)測(cè)試,電流ID=3A,工作頻率為8Hz。重復(fù)450次后,器件損壞,波形和失效圖片如圖4(b)和圖4(c)所示??梢钥吹剑骷纬删植繜狳c(diǎn),而且離G極比較近。因此,器件是在開通過(guò)程中,由于長(zhǎng)時(shí)間工作于線性區(qū)而發(fā)生損壞。
圖4(e)是器件AOT5N50在一個(gè)實(shí)際應(yīng)用中,在動(dòng)態(tài)老化測(cè)試過(guò)程發(fā)生失效的圖片。起動(dòng)過(guò)程中,MOSFET實(shí)際驅(qū)動(dòng)電壓為5V,MOSFET工作在線性區(qū),失效形態(tài)與圖4(c)相同。
功率MOSFET單一的過(guò)電壓損壞形態(tài)通常是在中間散熱較差的區(qū)域出現(xiàn)一個(gè)局部的熱點(diǎn),而單一的過(guò)電流的損壞位置通常是在電流集中的靠近S極的區(qū)域。實(shí)際應(yīng)用中,通常先發(fā)生過(guò)流,短路保護(hù)MOSFET關(guān)斷后,又經(jīng)歷雪崩過(guò)壓的復(fù)合損壞形態(tài)。假如損壞位置距離G極近,則開通過(guò)程中損壞的幾率更大;假如損壞位置距離G極遠(yuǎn),則關(guān)斷開通過(guò)程中損壞幾率更大。功率MOSFET管在線性區(qū)工作時(shí),出現(xiàn)的失效形態(tài)也是局部的熱點(diǎn),熱量的累積影響損壞熱點(diǎn)洞坑的大小。散熱條件是決定失效損壞發(fā)生位置的重要因素,芯片的封裝類型及封裝工藝影響芯片的散熱條件。另外,芯片生產(chǎn)工藝出現(xiàn)單元性能不一致而形成性能較差的單元,也會(huì)影響到損壞的位置。參考文獻(xiàn)
[1]劉松.基于漏極導(dǎo)通區(qū)特性理解MOSFET開關(guān)過(guò)程[J].今日電子,2008(11):74-75.
[2]劉松.理解功率MOSFET的開關(guān)損耗[J].今日電子,2009(10):52-55.
[3]劉松,葛小榮.理解功率MOSFET的電流[J].今日電子,2011(11):35-37.
[4]劉松.理解功率MOSFET的Rds(on)溫度系數(shù)特性[J].今日電子,2009(11):25-26.
[5]劉松,葛小榮.應(yīng)用于線性調(diào)節(jié)器的中壓功率功率MOSFET的選擇[J].今日電子,2012(2):36-38.
[6]劉松,陳均,林濤.功率MOS管Rds(on)負(fù)溫度系數(shù)對(duì)負(fù)載開關(guān)設(shè)計(jì)影響[J].電子技術(shù)應(yīng)用,2010,36(12):72-74.